Loading…
Deep learning based retinal OCT segmentation
We look at the recent application of deep learning (DL) methods in automated fine-grained segmentation of spectral domain optical coherence tomography (OCT) images of the retina. We describe a new method combining fully convolutional networks (FCN) with Gaussian Processes for post processing. We rep...
Saved in:
Published in: | Computers in biology and medicine 2019-11, Vol.114, p.103445-103445, Article 103445 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We look at the recent application of deep learning (DL) methods in automated fine-grained segmentation of spectral domain optical coherence tomography (OCT) images of the retina. We describe a new method combining fully convolutional networks (FCN) with Gaussian Processes for post processing. We report performance comparisons between the proposed approach, human clinicians, and other machine learning (ML) such as graph based approaches. The approach is demonstrated on an OCT dataset consisting of mild non-proliferative diabetic retinopathy from the University of Miami. The method is shown to have performance on par with humans, also compares favorably with the other ML methods, and appears to have as small or smaller mean unsigned error (equal to 1.06), versus errors ranging from 1.17 to 1.81 for other methods, and compared with human error of 1.10. |
---|---|
ISSN: | 0010-4825 1879-0534 |
DOI: | 10.1016/j.compbiomed.2019.103445 |