Loading…

A stochastic model for interacting neurons in the olfactory bulb

We focus on interacting neurons organized in a block-layered network devoted to the information processing from the sensory system to the brain. Specifically, we consider the firing activity of olfactory sensory neurons, periglomerular, granule and mitral cells in the context of the neuronal activit...

Full description

Saved in:
Bibliographic Details
Published in:BioSystems 2019-11, Vol.185, p.104030-104030, Article 104030
Main Authors: Ascione, G., Carfora, M.F., Pirozzi, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We focus on interacting neurons organized in a block-layered network devoted to the information processing from the sensory system to the brain. Specifically, we consider the firing activity of olfactory sensory neurons, periglomerular, granule and mitral cells in the context of the neuronal activity of the olfactory bulb. We propose and investigate a stochastic model of a layered and modular network to describe the dynamic behavior of each prototypical neuron, taking into account both its role (excitatory/inhibitory) and its location within the network. We adopt specific Gauss-Markov processes suitable to provide reliable estimates of the firing activity of the different neurons, given their linkages. Furthermore, we study the impact of selective excitation/inhibition on the information transmission by means of simulations and numerical estimates obtained through a Volterra integral approach.
ISSN:0303-2647
1872-8324
DOI:10.1016/j.biosystems.2019.104030