Loading…
A phase diagram-based toolbox to assess the impact of freeze/thaw ramps on the phase behavior of proteins
The influence of process parameters during freeze/thaw (FT) operations is essential for the preservation of the protein stability/activity during production and storage processes in the biopharmaceutical industry. Process parameters, such as FT ramps, the final storage time and temperature, affect t...
Saved in:
Published in: | Bioprocess and biosystems engineering 2020-02, Vol.43 (2), p.179-192 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The influence of process parameters during freeze/thaw (FT) operations is essential for the preservation of the protein stability/activity during production and storage processes in the biopharmaceutical industry. Process parameters, such as FT ramps, the final storage time and temperature, affect the occurring FT stress onto the target protein in different ways. FT stress includes cold denaturation, freeze concentration, and ice crystal formation which can result in protein aggregation. To visualize the impact of variations in FT ramps, descriptors such as solubility, phase behavior and crystal morphology were evaluated. The phase diagram-based toolbox in combination with an HTS-compatible cryo-device allowed the identification of suitable ramping schemes during FT operations. It could be clearly shown that rapid operations are needed above the glass transition temperature of the target protein to circumvent precipitation during FT cycles. Finally, a stability index is introduced which allows ranking of the systems investigated.
Graphic abstract |
---|---|
ISSN: | 1615-7591 1615-7605 |
DOI: | 10.1007/s00449-019-02215-5 |