Loading…
Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage
The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface area...
Saved in:
Published in: | Advanced materials (Weinheim) 2020-01, Vol.32 (1), p.e1903826-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | e1903826 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Yun, Qinbai Li, Liuxiao Hu, Zhaoning Lu, Qipeng Chen, Bo Zhang, Hua |
description | The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD‐based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium‐ion batteries, lithium–sulfur batteries, sodium‐ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD‐based electrode materials are discussed. Furthermore, the applications of layered TMD‐based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed.
A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are emerging as promising materials for electrochemical energy storage systems. The typical methods for preparation of layered TMD‐based nanomaterials, as well as their applications in various kinds of rechargeable batteries and supercapacitors, are summarized. Moreover, current challenges and future research directions in this field are proposed. |
doi_str_mv | 10.1002/adma.201903826 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2299448713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333826754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33</originalsourceid><addsrcrecordid>eNqF0D9PGzEYx3GrKiqBsnZEJ3XpcsH_cx7TENpKAYZmN098j4PR3Rnsi1C2vgReI6-kF4WC1IXJy-f5yfoS8oXRMaOUn0HdwphTZqiouP5ARkxxVkpq1Ecyokao0mhZHZKjnO8opUZT_YkcCqa05tqMyM0CtpiwLpYJuhz6ELviEntoivPgbqFxcY1dqPH5z9N3yIO7gi620GMK0OTCx1TMG3R9iu4W2-CGw3mHab0tfvcxwRo_kwM_SDx5eY_J8mK-nP0sF9c_fs2mi9JJxnUptTKMCZTcw6pyfmV8raFS3jMnwU20qWoA7w16UUNVTbQSzjlKHSgOQhyTb_vZ-xQfNph724bssGmgw7jJlnNjpKwmbEe__kfv4iZ1w-csF2KXcaLkoMZ75VLMOaG39ym0kLaWUbtLb3fp7Wv64eD0ZXazarF-5f9aD8DswWNocPvOnJ2eX07fxv8CiGySMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333826754</pqid></control><display><type>article</type><title>Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage</title><source>Wiley</source><creator>Yun, Qinbai ; Li, Liuxiao ; Hu, Zhaoning ; Lu, Qipeng ; Chen, Bo ; Zhang, Hua</creator><creatorcontrib>Yun, Qinbai ; Li, Liuxiao ; Hu, Zhaoning ; Lu, Qipeng ; Chen, Bo ; Zhang, Hua</creatorcontrib><description>The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD‐based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium‐ion batteries, lithium–sulfur batteries, sodium‐ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD‐based electrode materials are discussed. Furthermore, the applications of layered TMD‐based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed.
A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are emerging as promising materials for electrochemical energy storage systems. The typical methods for preparation of layered TMD‐based nanomaterials, as well as their applications in various kinds of rechargeable batteries and supercapacitors, are summarized. Moreover, current challenges and future research directions in this field are proposed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201903826</identifier><identifier>PMID: 31566269</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Chalcogenides ; Electrochemical analysis ; electrochemical energy storage ; Electrode materials ; Electrodes ; Energy storage ; Ion transport ; layered materials ; Lithium ; Lithium sulfur batteries ; Lithium-ion batteries ; Materials science ; Nanomaterials ; Rechargeable batteries ; Supercapacitors ; Transition metal compounds ; transition metal dichalcogenides</subject><ispartof>Advanced materials (Weinheim), 2020-01, Vol.32 (1), p.e1903826-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33</citedby><cites>FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33</cites><orcidid>0000-0001-9518-740X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31566269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yun, Qinbai</creatorcontrib><creatorcontrib>Li, Liuxiao</creatorcontrib><creatorcontrib>Hu, Zhaoning</creatorcontrib><creatorcontrib>Lu, Qipeng</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><title>Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD‐based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium‐ion batteries, lithium–sulfur batteries, sodium‐ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD‐based electrode materials are discussed. Furthermore, the applications of layered TMD‐based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed.
A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are emerging as promising materials for electrochemical energy storage systems. The typical methods for preparation of layered TMD‐based nanomaterials, as well as their applications in various kinds of rechargeable batteries and supercapacitors, are summarized. Moreover, current challenges and future research directions in this field are proposed.</description><subject>Batteries</subject><subject>Chalcogenides</subject><subject>Electrochemical analysis</subject><subject>electrochemical energy storage</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Ion transport</subject><subject>layered materials</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Rechargeable batteries</subject><subject>Supercapacitors</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0D9PGzEYx3GrKiqBsnZEJ3XpcsH_cx7TENpKAYZmN098j4PR3Rnsi1C2vgReI6-kF4WC1IXJy-f5yfoS8oXRMaOUn0HdwphTZqiouP5ARkxxVkpq1Ecyokao0mhZHZKjnO8opUZT_YkcCqa05tqMyM0CtpiwLpYJuhz6ELviEntoivPgbqFxcY1dqPH5z9N3yIO7gi620GMK0OTCx1TMG3R9iu4W2-CGw3mHab0tfvcxwRo_kwM_SDx5eY_J8mK-nP0sF9c_fs2mi9JJxnUptTKMCZTcw6pyfmV8raFS3jMnwU20qWoA7w16UUNVTbQSzjlKHSgOQhyTb_vZ-xQfNph724bssGmgw7jJlnNjpKwmbEe__kfv4iZ1w-csF2KXcaLkoMZ75VLMOaG39ym0kLaWUbtLb3fp7Wv64eD0ZXazarF-5f9aD8DswWNocPvOnJ2eX07fxv8CiGySMw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yun, Qinbai</creator><creator>Li, Liuxiao</creator><creator>Hu, Zhaoning</creator><creator>Lu, Qipeng</creator><creator>Chen, Bo</creator><creator>Zhang, Hua</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9518-740X</orcidid></search><sort><creationdate>20200101</creationdate><title>Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage</title><author>Yun, Qinbai ; Li, Liuxiao ; Hu, Zhaoning ; Lu, Qipeng ; Chen, Bo ; Zhang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Chalcogenides</topic><topic>Electrochemical analysis</topic><topic>electrochemical energy storage</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Ion transport</topic><topic>layered materials</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Rechargeable batteries</topic><topic>Supercapacitors</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Qinbai</creatorcontrib><creatorcontrib>Li, Liuxiao</creatorcontrib><creatorcontrib>Hu, Zhaoning</creatorcontrib><creatorcontrib>Lu, Qipeng</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Qinbai</au><au>Li, Liuxiao</au><au>Hu, Zhaoning</au><au>Lu, Qipeng</au><au>Chen, Bo</au><au>Zhang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>32</volume><issue>1</issue><spage>e1903826</spage><epage>n/a</epage><pages>e1903826-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD‐based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium‐ion batteries, lithium–sulfur batteries, sodium‐ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD‐based electrode materials are discussed. Furthermore, the applications of layered TMD‐based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed.
A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are emerging as promising materials for electrochemical energy storage systems. The typical methods for preparation of layered TMD‐based nanomaterials, as well as their applications in various kinds of rechargeable batteries and supercapacitors, are summarized. Moreover, current challenges and future research directions in this field are proposed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31566269</pmid><doi>10.1002/adma.201903826</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-9518-740X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-01, Vol.32 (1), p.e1903826-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2299448713 |
source | Wiley |
subjects | Batteries Chalcogenides Electrochemical analysis electrochemical energy storage Electrode materials Electrodes Energy storage Ion transport layered materials Lithium Lithium sulfur batteries Lithium-ion batteries Materials science Nanomaterials Rechargeable batteries Supercapacitors Transition metal compounds transition metal dichalcogenides |
title | Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layered%20Transition%20Metal%20Dichalcogenide%E2%80%90Based%20Nanomaterials%20for%20Electrochemical%20Energy%20Storage&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yun,%20Qinbai&rft.date=2020-01-01&rft.volume=32&rft.issue=1&rft.spage=e1903826&rft.epage=n/a&rft.pages=e1903826-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201903826&rft_dat=%3Cproquest_cross%3E2333826754%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2333826754&rft_id=info:pmid/31566269&rfr_iscdi=true |