Loading…

Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage

The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface area...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2020-01, Vol.32 (1), p.e1903826-n/a
Main Authors: Yun, Qinbai, Li, Liuxiao, Hu, Zhaoning, Lu, Qipeng, Chen, Bo, Zhang, Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33
cites cdi_FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33
container_end_page n/a
container_issue 1
container_start_page e1903826
container_title Advanced materials (Weinheim)
container_volume 32
creator Yun, Qinbai
Li, Liuxiao
Hu, Zhaoning
Lu, Qipeng
Chen, Bo
Zhang, Hua
description The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD‐based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium‐ion batteries, lithium–sulfur batteries, sodium‐ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD‐based electrode materials are discussed. Furthermore, the applications of layered TMD‐based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are emerging as promising materials for electrochemical energy storage systems. The typical methods for preparation of layered TMD‐based nanomaterials, as well as their applications in various kinds of rechargeable batteries and supercapacitors, are summarized. Moreover, current challenges and future research directions in this field are proposed.
doi_str_mv 10.1002/adma.201903826
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2299448713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2333826754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33</originalsourceid><addsrcrecordid>eNqF0D9PGzEYx3GrKiqBsnZEJ3XpcsH_cx7TENpKAYZmN098j4PR3Rnsi1C2vgReI6-kF4WC1IXJy-f5yfoS8oXRMaOUn0HdwphTZqiouP5ARkxxVkpq1Ecyokao0mhZHZKjnO8opUZT_YkcCqa05tqMyM0CtpiwLpYJuhz6ELviEntoivPgbqFxcY1dqPH5z9N3yIO7gi620GMK0OTCx1TMG3R9iu4W2-CGw3mHab0tfvcxwRo_kwM_SDx5eY_J8mK-nP0sF9c_fs2mi9JJxnUptTKMCZTcw6pyfmV8raFS3jMnwU20qWoA7w16UUNVTbQSzjlKHSgOQhyTb_vZ-xQfNph724bssGmgw7jJlnNjpKwmbEe__kfv4iZ1w-csF2KXcaLkoMZ75VLMOaG39ym0kLaWUbtLb3fp7Wv64eD0ZXazarF-5f9aD8DswWNocPvOnJ2eX07fxv8CiGySMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333826754</pqid></control><display><type>article</type><title>Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage</title><source>Wiley</source><creator>Yun, Qinbai ; Li, Liuxiao ; Hu, Zhaoning ; Lu, Qipeng ; Chen, Bo ; Zhang, Hua</creator><creatorcontrib>Yun, Qinbai ; Li, Liuxiao ; Hu, Zhaoning ; Lu, Qipeng ; Chen, Bo ; Zhang, Hua</creatorcontrib><description>The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD‐based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium‐ion batteries, lithium–sulfur batteries, sodium‐ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD‐based electrode materials are discussed. Furthermore, the applications of layered TMD‐based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are emerging as promising materials for electrochemical energy storage systems. The typical methods for preparation of layered TMD‐based nanomaterials, as well as their applications in various kinds of rechargeable batteries and supercapacitors, are summarized. Moreover, current challenges and future research directions in this field are proposed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201903826</identifier><identifier>PMID: 31566269</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Chalcogenides ; Electrochemical analysis ; electrochemical energy storage ; Electrode materials ; Electrodes ; Energy storage ; Ion transport ; layered materials ; Lithium ; Lithium sulfur batteries ; Lithium-ion batteries ; Materials science ; Nanomaterials ; Rechargeable batteries ; Supercapacitors ; Transition metal compounds ; transition metal dichalcogenides</subject><ispartof>Advanced materials (Weinheim), 2020-01, Vol.32 (1), p.e1903826-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33</citedby><cites>FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33</cites><orcidid>0000-0001-9518-740X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31566269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yun, Qinbai</creatorcontrib><creatorcontrib>Li, Liuxiao</creatorcontrib><creatorcontrib>Hu, Zhaoning</creatorcontrib><creatorcontrib>Lu, Qipeng</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><title>Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD‐based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium‐ion batteries, lithium–sulfur batteries, sodium‐ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD‐based electrode materials are discussed. Furthermore, the applications of layered TMD‐based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are emerging as promising materials for electrochemical energy storage systems. The typical methods for preparation of layered TMD‐based nanomaterials, as well as their applications in various kinds of rechargeable batteries and supercapacitors, are summarized. Moreover, current challenges and future research directions in this field are proposed.</description><subject>Batteries</subject><subject>Chalcogenides</subject><subject>Electrochemical analysis</subject><subject>electrochemical energy storage</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Ion transport</subject><subject>layered materials</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Nanomaterials</subject><subject>Rechargeable batteries</subject><subject>Supercapacitors</subject><subject>Transition metal compounds</subject><subject>transition metal dichalcogenides</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0D9PGzEYx3GrKiqBsnZEJ3XpcsH_cx7TENpKAYZmN098j4PR3Rnsi1C2vgReI6-kF4WC1IXJy-f5yfoS8oXRMaOUn0HdwphTZqiouP5ARkxxVkpq1Ecyokao0mhZHZKjnO8opUZT_YkcCqa05tqMyM0CtpiwLpYJuhz6ELviEntoivPgbqFxcY1dqPH5z9N3yIO7gi620GMK0OTCx1TMG3R9iu4W2-CGw3mHab0tfvcxwRo_kwM_SDx5eY_J8mK-nP0sF9c_fs2mi9JJxnUptTKMCZTcw6pyfmV8raFS3jMnwU20qWoA7w16UUNVTbQSzjlKHSgOQhyTb_vZ-xQfNph724bssGmgw7jJlnNjpKwmbEe__kfv4iZ1w-csF2KXcaLkoMZ75VLMOaG39ym0kLaWUbtLb3fp7Wv64eD0ZXazarF-5f9aD8DswWNocPvOnJ2eX07fxv8CiGySMw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yun, Qinbai</creator><creator>Li, Liuxiao</creator><creator>Hu, Zhaoning</creator><creator>Lu, Qipeng</creator><creator>Chen, Bo</creator><creator>Zhang, Hua</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9518-740X</orcidid></search><sort><creationdate>20200101</creationdate><title>Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage</title><author>Yun, Qinbai ; Li, Liuxiao ; Hu, Zhaoning ; Lu, Qipeng ; Chen, Bo ; Zhang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Chalcogenides</topic><topic>Electrochemical analysis</topic><topic>electrochemical energy storage</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Ion transport</topic><topic>layered materials</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Nanomaterials</topic><topic>Rechargeable batteries</topic><topic>Supercapacitors</topic><topic>Transition metal compounds</topic><topic>transition metal dichalcogenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Qinbai</creatorcontrib><creatorcontrib>Li, Liuxiao</creatorcontrib><creatorcontrib>Hu, Zhaoning</creatorcontrib><creatorcontrib>Lu, Qipeng</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Qinbai</au><au>Li, Liuxiao</au><au>Hu, Zhaoning</au><au>Lu, Qipeng</au><au>Chen, Bo</au><au>Zhang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>32</volume><issue>1</issue><spage>e1903826</spage><epage>n/a</epage><pages>e1903826-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The rapid development of electrochemical energy storage (EES) systems requires novel electrode materials with high performance. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are regarded as promising materials used for EES systems due to their large specific surface areas and layer structures benefiting fast ion transport. The typical methods for the preparation of TMDs and TMD‐based nanohybrids are first summarized. Then, in order to improve the electrochemical performance of various kinds of rechargeable batteries, such as lithium‐ion batteries, lithium–sulfur batteries, sodium‐ion batteries, and other types of emerging batteries, the strategies for the design and fabrication of layered TMD‐based electrode materials are discussed. Furthermore, the applications of layered TMD‐based nanomaterials in supercapacitors, especially in untraditional supercapacitors, are presented. Finally, the existing challenges and promising future research directions in this field are proposed. A typical 2D nanomaterial, layered transition metal dichalcogenides (TMDs) are emerging as promising materials for electrochemical energy storage systems. The typical methods for preparation of layered TMD‐based nanomaterials, as well as their applications in various kinds of rechargeable batteries and supercapacitors, are summarized. Moreover, current challenges and future research directions in this field are proposed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31566269</pmid><doi>10.1002/adma.201903826</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-9518-740X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-01, Vol.32 (1), p.e1903826-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2299448713
source Wiley
subjects Batteries
Chalcogenides
Electrochemical analysis
electrochemical energy storage
Electrode materials
Electrodes
Energy storage
Ion transport
layered materials
Lithium
Lithium sulfur batteries
Lithium-ion batteries
Materials science
Nanomaterials
Rechargeable batteries
Supercapacitors
Transition metal compounds
transition metal dichalcogenides
title Layered Transition Metal Dichalcogenide‐Based Nanomaterials for Electrochemical Energy Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layered%20Transition%20Metal%20Dichalcogenide%E2%80%90Based%20Nanomaterials%20for%20Electrochemical%20Energy%20Storage&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yun,%20Qinbai&rft.date=2020-01-01&rft.volume=32&rft.issue=1&rft.spage=e1903826&rft.epage=n/a&rft.pages=e1903826-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201903826&rft_dat=%3Cproquest_cross%3E2333826754%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4126-4659113e42fab8cfb9fd6a85ff1c4ac7698daaff9ef3da887653ccc00ca52a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2333826754&rft_id=info:pmid/31566269&rfr_iscdi=true