Loading…
An analysis of training and generalization errors in shallow and deep networks
This paper is motivated by an open problem around deep networks, namely, the apparent absence of over-fitting despite large over-parametrization which allows perfect fitting of the training data. In this paper, we analyze this phenomenon in the case of regression problems when each unit evaluates a...
Saved in:
Published in: | Neural networks 2020-01, Vol.121, p.229-241 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-58ea090a6ac3ee5ee8725589de6e86d063d328efc8ccf764b7b09c742f42d03d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-58ea090a6ac3ee5ee8725589de6e86d063d328efc8ccf764b7b09c742f42d03d3 |
container_end_page | 241 |
container_issue | |
container_start_page | 229 |
container_title | Neural networks |
container_volume | 121 |
creator | Mhaskar, H.N. Poggio, T. |
description | This paper is motivated by an open problem around deep networks, namely, the apparent absence of over-fitting despite large over-parametrization which allows perfect fitting of the training data. In this paper, we analyze this phenomenon in the case of regression problems when each unit evaluates a periodic activation function. We argue that the minimal expected value of the square loss is inappropriate to measure the generalization error in approximation of compositional functions in order to take full advantage of the compositional structure. Instead, we measure the generalization error in the sense of maximum loss, and sometimes, as a pointwise error. We give estimates on exactly how many parameters ensure both zero training error as well as a good generalization error. We prove that a solution of a regularization problem is guaranteed to yield a good training error as well as a good generalization error and estimate how much error to expect at which test data. |
doi_str_mv | 10.1016/j.neunet.2019.08.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2300184630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608019302552</els_id><sourcerecordid>2300184630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-58ea090a6ac3ee5ee8725589de6e86d063d328efc8ccf764b7b09c742f42d03d3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQQC0EgrL8AUI5ckkYL3GcCxJCbBKCC5wt156AS2oXOwWVrydQ4MhppJk32yPkkEJFgcqTWRVwGXCoGNC2AlUBUxtkQlXTlqxRbJNMQLW8lKBgh-zmPAMAqQTfJjuc1o0QlE_I3VkoTDD9KvtcxK4YkvHBh6cx6YonDJhM7z_M4GMoMKWYcuFDkZ9N38f3b8ghLorxjveYXvI-2epMn_HgJ-6Rx8uLh_Pr8vb-6ub87La0AtRQ1goNtGCksRyxRlQNq2vVOpSopAPJHWcKO6us7Ropps0UWtsI1gnmYCzukeP13EWKr0vMg577bLHvTcC4zJpxAKqE5DCiYo3aFHNO2OlF8nOTVpqC_jKpZ3ptUn-Z1KD0aHJsO_rZsJzO0f01_aobgdM1gOOfbx6TztZjsOh8QjtoF_3_Gz4B5u-HYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300184630</pqid></control><display><type>article</type><title>An analysis of training and generalization errors in shallow and deep networks</title><source>ScienceDirect Freedom Collection</source><creator>Mhaskar, H.N. ; Poggio, T.</creator><creatorcontrib>Mhaskar, H.N. ; Poggio, T.</creatorcontrib><description>This paper is motivated by an open problem around deep networks, namely, the apparent absence of over-fitting despite large over-parametrization which allows perfect fitting of the training data. In this paper, we analyze this phenomenon in the case of regression problems when each unit evaluates a periodic activation function. We argue that the minimal expected value of the square loss is inappropriate to measure the generalization error in approximation of compositional functions in order to take full advantage of the compositional structure. Instead, we measure the generalization error in the sense of maximum loss, and sometimes, as a pointwise error. We give estimates on exactly how many parameters ensure both zero training error as well as a good generalization error. We prove that a solution of a regularization problem is guaranteed to yield a good training error as well as a good generalization error and estimate how much error to expect at which test data.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2019.08.028</identifier><identifier>PMID: 31574413</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Deep learning ; Generalization error ; Humans ; Interpolatory approximation ; Machine Learning ; Neural Networks, Computer</subject><ispartof>Neural networks, 2020-01, Vol.121, p.229-241</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-58ea090a6ac3ee5ee8725589de6e86d063d328efc8ccf764b7b09c742f42d03d3</citedby><cites>FETCH-LOGICAL-c408t-58ea090a6ac3ee5ee8725589de6e86d063d328efc8ccf764b7b09c742f42d03d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31574413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mhaskar, H.N.</creatorcontrib><creatorcontrib>Poggio, T.</creatorcontrib><title>An analysis of training and generalization errors in shallow and deep networks</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper is motivated by an open problem around deep networks, namely, the apparent absence of over-fitting despite large over-parametrization which allows perfect fitting of the training data. In this paper, we analyze this phenomenon in the case of regression problems when each unit evaluates a periodic activation function. We argue that the minimal expected value of the square loss is inappropriate to measure the generalization error in approximation of compositional functions in order to take full advantage of the compositional structure. Instead, we measure the generalization error in the sense of maximum loss, and sometimes, as a pointwise error. We give estimates on exactly how many parameters ensure both zero training error as well as a good generalization error. We prove that a solution of a regularization problem is guaranteed to yield a good training error as well as a good generalization error and estimate how much error to expect at which test data.</description><subject>Deep learning</subject><subject>Generalization error</subject><subject>Humans</subject><subject>Interpolatory approximation</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQQC0EgrL8AUI5ckkYL3GcCxJCbBKCC5wt156AS2oXOwWVrydQ4MhppJk32yPkkEJFgcqTWRVwGXCoGNC2AlUBUxtkQlXTlqxRbJNMQLW8lKBgh-zmPAMAqQTfJjuc1o0QlE_I3VkoTDD9KvtcxK4YkvHBh6cx6YonDJhM7z_M4GMoMKWYcuFDkZ9N38f3b8ghLorxjveYXvI-2epMn_HgJ-6Rx8uLh_Pr8vb-6ub87La0AtRQ1goNtGCksRyxRlQNq2vVOpSopAPJHWcKO6us7Ropps0UWtsI1gnmYCzukeP13EWKr0vMg577bLHvTcC4zJpxAKqE5DCiYo3aFHNO2OlF8nOTVpqC_jKpZ3ptUn-Z1KD0aHJsO_rZsJzO0f01_aobgdM1gOOfbx6TztZjsOh8QjtoF_3_Gz4B5u-HYw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Mhaskar, H.N.</creator><creator>Poggio, T.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202001</creationdate><title>An analysis of training and generalization errors in shallow and deep networks</title><author>Mhaskar, H.N. ; Poggio, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-58ea090a6ac3ee5ee8725589de6e86d063d328efc8ccf764b7b09c742f42d03d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deep learning</topic><topic>Generalization error</topic><topic>Humans</topic><topic>Interpolatory approximation</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mhaskar, H.N.</creatorcontrib><creatorcontrib>Poggio, T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mhaskar, H.N.</au><au>Poggio, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analysis of training and generalization errors in shallow and deep networks</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2020-01</date><risdate>2020</risdate><volume>121</volume><spage>229</spage><epage>241</epage><pages>229-241</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper is motivated by an open problem around deep networks, namely, the apparent absence of over-fitting despite large over-parametrization which allows perfect fitting of the training data. In this paper, we analyze this phenomenon in the case of regression problems when each unit evaluates a periodic activation function. We argue that the minimal expected value of the square loss is inappropriate to measure the generalization error in approximation of compositional functions in order to take full advantage of the compositional structure. Instead, we measure the generalization error in the sense of maximum loss, and sometimes, as a pointwise error. We give estimates on exactly how many parameters ensure both zero training error as well as a good generalization error. We prove that a solution of a regularization problem is guaranteed to yield a good training error as well as a good generalization error and estimate how much error to expect at which test data.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31574413</pmid><doi>10.1016/j.neunet.2019.08.028</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2020-01, Vol.121, p.229-241 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_2300184630 |
source | ScienceDirect Freedom Collection |
subjects | Deep learning Generalization error Humans Interpolatory approximation Machine Learning Neural Networks, Computer |
title | An analysis of training and generalization errors in shallow and deep networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analysis%20of%20training%20and%20generalization%20errors%20in%20shallow%20and%20deep%20networks&rft.jtitle=Neural%20networks&rft.au=Mhaskar,%20H.N.&rft.date=2020-01&rft.volume=121&rft.spage=229&rft.epage=241&rft.pages=229-241&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2019.08.028&rft_dat=%3Cproquest_cross%3E2300184630%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-58ea090a6ac3ee5ee8725589de6e86d063d328efc8ccf764b7b09c742f42d03d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2300184630&rft_id=info:pmid/31574413&rfr_iscdi=true |