Loading…

Ultrasensitive biosensor based on magnetic microspheres enhanced microfiber interferometer

A critical barrier for the successful development of fiber sensors for bio-chemical processes is their limitedly improved sensitivity, restricted by the sensor structural design. To solve this, in this paper, a novel concept was proposed using functionalised modified magnetic microspheres (MMSs) to...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2019-12, Vol.145, p.111563-111563, Article 111563
Main Authors: Kumar, Rahul, Leng, Yuankui, Liu, Bin, Zhou, Jun, Shao, Liyang, Yuan, Jinhui, Fan, Xinyu, Wan, Shengpeng, Wu, Tao, Liu, Juan, Binns, Richard, Fu, Yong Qing, Ng, Wai Pang, Farrell, Gerald, Semenova, Yuliya, Xu, Hengyi, Xiong, Yonghua, He, Xingdao, Wu, Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A critical barrier for the successful development of fiber sensors for bio-chemical processes is their limitedly improved sensitivity, restricted by the sensor structural design. To solve this, in this paper, a novel concept was proposed using functionalised modified magnetic microspheres (MMSs) to “amplify” the effect of target bio-chemical analytes to significantly improve the fiber sensor's sensitivity, which has been demonstrated using human chorionic gonadotropin (hCG) as an example. Two types of antibody hCG, (β and α, both can specifically bind with hCG), were adhered on the surface of fibre sensor and MMSs respectively. Both hCG and MMSs will be specifically captured by the fibre sensor, where MMSs act as an “amplifier” to improve the sensor sensitivity. Experimentally immunomagnetic detection limit of 0.0001 mIU/mL has been achieved, which is the highest reported so far. This newly developed methodology opens a new direction for sensitivity improvement and could be further explored to applications require ultrahigh sensitivity detections such as earlier medical diagnostics. •Use surface modified magnetic microspheres (MMSs) to “amplify” the signal of target analyte.•Provide “additional” sensitivity improvement for the fabricated sensor.•Demonstrated limit of detection of human chorionic gonadotropin as low as 0.0001 mIU/mL, the best value reported so far.•The concept will be pivotal for applications require ultra-high sensitivity detection such as early medical diagnostics..
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2019.111563