Loading…

The chronic effect of amorphous silica nanoparticles and benzoapyrene co-exposure at low dose in human bronchial epithelial BEAS-2B cells

As the main components of fine particulate matter (PM2.5), silica nanoparticles (SiNPs) and benzo[a]pyrene (B[a]P) have attracted increasing attention recently. However, co-exposure to SiNPs and B[a]P causes pulmonary injury by aggravating toxicity via an unknown mechanism. This study aimed at inves...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology research (Cambridge) 2019-09, Vol.8 (5), p.731
Main Authors: Wu, Jing, Zhang, Jie, Nie, Jihua, Duan, Junchao, Shi, Yanfeng, Feng, Lin, Yang, Xiaozhe, An, Yan, Sun, Zhiwei
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As the main components of fine particulate matter (PM2.5), silica nanoparticles (SiNPs) and benzo[a]pyrene (B[a]P) have attracted increasing attention recently. However, co-exposure to SiNPs and B[a]P causes pulmonary injury by aggravating toxicity via an unknown mechanism. This study aimed at investigating the toxicity caused due to long-term co-exposure to SiNPs and B[a]P on pulmonary systems at low dose using human bronchial epithelial (BEAS-2B) cells. The characterizations of SiNPs and B[a]P were done by transmission electron microscopy (TEM) and zeta potential granulometry. Cytotoxicity is evaluated using cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) activity; oxidative stress, cell cycle and apoptosis were assessed by flow cytometry, and inflammatory factors were detected using a Luminex xMAP system. Results show an obvious inhibition of cell proliferation and a marked increase in the LDH expression in the BEAS-2B cells after long-term co-exposure. Furthermore, long-term co-exposure is the most potent in generating intracellular ROS, thus causing inflammation. Cellular apoptotic rate is enhanced in the co-exposed group at low dose. Moreover, the long-term co-exposure induces significant cell cycle arrest, increasing the proportion of cells at the G2/M phase, while decreasing those at the G0/G1 phase. This study is the first attempt to reveal the severe synergistic and additive toxic effects induced by SiNPs and B[a]P co-exposure for long-term in BEAS-2B cells even at low dose.As the main components of fine particulate matter (PM2.5), silica nanoparticles (SiNPs) and benzo[a]pyrene (B[a]P) have attracted increasing attention recently. However, co-exposure to SiNPs and B[a]P causes pulmonary injury by aggravating toxicity via an unknown mechanism. This study aimed at investigating the toxicity caused due to long-term co-exposure to SiNPs and B[a]P on pulmonary systems at low dose using human bronchial epithelial (BEAS-2B) cells. The characterizations of SiNPs and B[a]P were done by transmission electron microscopy (TEM) and zeta potential granulometry. Cytotoxicity is evaluated using cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) activity; oxidative stress, cell cycle and apoptosis were assessed by flow cytometry, and inflammatory factors were detected using a Luminex xMAP system. Results show an obvious inhibition of cell proliferation and a marked increase in the LDH expression in the BEAS-2B cells after long-te
ISSN:2045-452X
DOI:10.1039/c9tx00112c