Loading…
Single-cell RNA-seq analysis of Mesp1-induced skeletal myogenic development
The Mesp1 lineage contributes to cardiac, hematopoietic and skeletal myogenic development. Interestingly, muscle stem cells residing in craniofacial skeletal muscles primarily arise from Mesp1+ progenitors, but those in trunk and limb skeletal muscles do not. To gain insights into the difference bet...
Saved in:
Published in: | Biochemical and biophysical research communications 2019-12, Vol.520 (2), p.284-290 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Mesp1 lineage contributes to cardiac, hematopoietic and skeletal myogenic development. Interestingly, muscle stem cells residing in craniofacial skeletal muscles primarily arise from Mesp1+ progenitors, but those in trunk and limb skeletal muscles do not. To gain insights into the difference between the head and trunk/limb muscle developmental processes, we studied Mesp1+ skeletal myogenic derivatives via single-cell RNA-seq and other strategies. Using a doxycycline-inducible Mesp1-expressing mouse embryonic stem cell line, we found that the development of Mesp1-induced skeletal myogenic progenitors can be characterized by dynamic expression of PDGFRα and VCAM1. Single-cell RNA-seq analysis further revealed the heterogeneous nature of these Mesp1+ derivatives, spanning pluripotent and mesodermal to mesenchymal and skeletal myogenic. We subsequently reconstructed the single-cell trajectories of these subpopulations. Our data thereby provide a cell fate projection of Mesp1-induced skeletal myogenesis.
•Mesp1-induced skeletal myogenic progenitors express PDGFRα and VCAM1 transiently.•Single-cell RNA-seq reveals the heterogeneity of Mesp1+ derivatives.•Single-cell trajectory demonstrates Mesp1-induced skeletal myogenic development. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2019.09.140 |