Loading…

Marine Debris Polymers on Main Hawaiian Island Beaches, Sea Surface, and Seafloor

Polymeric differences of plastic debris were assessed across four compartments of the Main Hawaiian Islands (sea surface, windward beaches, leeward beaches, and seafloor) to better describe sources and fate. Plastic debris pieces (n = 4671) were collected from 11 beaches, three sea surface tows, and...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2019-11, Vol.53 (21), p.12218-12226
Main Authors: Brignac, Kayla C, Jung, Melissa R, King, Cheryl, Royer, Sarah-Jeanne, Blickley, Lauren, Lamson, Megan R, Potemra, James T, Lynch, Jennifer M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polymeric differences of plastic debris were assessed across four compartments of the Main Hawaiian Islands (sea surface, windward beaches, leeward beaches, and seafloor) to better describe sources and fate. Plastic debris pieces (n = 4671) were collected from 11 beaches, three sea surface tows, and three seafloor dives. Fourier transform infrared spectroscopy identified the polymers of 3551 pieces. Significant differences (p < 0.05) in concentration, types, polymer composition, and weathering were found among four compartments. Windward beaches had 1–2 orders of magnitude more plastic pollution (g/m2) than leeward beaches, despite smaller human populations on windward sides. Sea surface and windward beaches were dominated by severely weathered, less dense floating polymers (polyethylene and polypropylene comprised 92.7 and 93.5% on average, respectively, of the total debris mass), while leeward beaches and the seafloor debris consisted of less weathered and more dense sinking polymers (e.g., 41.0 and 44.7% of total mass consisted of the sum of polystyrene, nylon, cellulose acetate, polyethylene terephthalate, and additive-masked debris). These results are some of the first to provide evidence of polymeric stratification in the marine environment and emphasize that the majority of marine debris in Hawaii is floating in from distant sources rather than from Hawaii’s residents or tourists.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.9b03561