Loading…
Mutations in CHCHD2 cause α-synuclein aggregation
Abstract Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here,...
Saved in:
Published in: | Human molecular genetics 2019-12, Vol.28 (23), p.3895-3911 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3 |
container_end_page | 3911 |
container_issue | 23 |
container_start_page | 3895 |
container_title | Human molecular genetics |
container_volume | 28 |
creator | Ikeda, Aya Nishioka, Kenya Meng, Hongrui Takanashi, Masashi Hasegawa, Iwao Inoshita, Tsuyoshi Shiba-Fukushima, Kahori Li, Yuanzhe Yoshino, Hiroyo Mori, Akio Okuzumi, Ayami Yamaguchi, Akihiro Nonaka, Risa Izawa, Nana Ishikawa, Kei-ichi Saiki, Hidemoto Morita, Masayo Hasegawa, Masato Hasegawa, Kazuko Elahi, Montasir Funayama, Manabu Okano, Hideyuki Akamatsu, Wado Imai, Yuzuru Hattori, Nobutaka |
description | Abstract
Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD. |
doi_str_mv | 10.1093/hmg/ddz241 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2305042090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddz241</oup_id><sourcerecordid>2305042090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3</originalsourceid><addsrcrecordid>eNp90L1OwzAUhmELgWgpLFwAyoKEkEKPf-I0I0qBIhWxwGw5znEIyk-J46HcFTfCNRFIYWTy4Od8w0vIKYUrCgmfv9TFPM_fmaB7ZEqFhJDBgu-TKSRShDIBOSFHzr0CUCl4fEgmnEqAOF5MCXvwve7LtnFB2QTpKl0tWWC0dxh8foRu23hT4fCji6LD4kcekwOrK4cnu3dGnm9vntJVuH68u0-v16HhNO5D5MijSNvcSGM1ANooAb3QVMQ51VFkmZA5SjBWZAARSCZpJjJmZZ5phshn5GLc3XTtm0fXq7p0BqtKN9h6pxgfrgSDBAZ6OVLTtc51aNWmK2vdbRUF9d1IDY3U2GjAZ7tdn9WY_9HfKAM4H0HrN_8NfQFekm8e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305042090</pqid></control><display><type>article</type><title>Mutations in CHCHD2 cause α-synuclein aggregation</title><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>Ikeda, Aya ; Nishioka, Kenya ; Meng, Hongrui ; Takanashi, Masashi ; Hasegawa, Iwao ; Inoshita, Tsuyoshi ; Shiba-Fukushima, Kahori ; Li, Yuanzhe ; Yoshino, Hiroyo ; Mori, Akio ; Okuzumi, Ayami ; Yamaguchi, Akihiro ; Nonaka, Risa ; Izawa, Nana ; Ishikawa, Kei-ichi ; Saiki, Hidemoto ; Morita, Masayo ; Hasegawa, Masato ; Hasegawa, Kazuko ; Elahi, Montasir ; Funayama, Manabu ; Okano, Hideyuki ; Akamatsu, Wado ; Imai, Yuzuru ; Hattori, Nobutaka</creator><creatorcontrib>Ikeda, Aya ; Nishioka, Kenya ; Meng, Hongrui ; Takanashi, Masashi ; Hasegawa, Iwao ; Inoshita, Tsuyoshi ; Shiba-Fukushima, Kahori ; Li, Yuanzhe ; Yoshino, Hiroyo ; Mori, Akio ; Okuzumi, Ayami ; Yamaguchi, Akihiro ; Nonaka, Risa ; Izawa, Nana ; Ishikawa, Kei-ichi ; Saiki, Hidemoto ; Morita, Masayo ; Hasegawa, Masato ; Hasegawa, Kazuko ; Elahi, Montasir ; Funayama, Manabu ; Okano, Hideyuki ; Akamatsu, Wado ; Imai, Yuzuru ; Hattori, Nobutaka</creatorcontrib><description>Abstract
Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddz241</identifier><identifier>PMID: 31600778</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Human molecular genetics, 2019-12, Vol.28 (23), p.3895-3911</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3</citedby><cites>FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31600778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikeda, Aya</creatorcontrib><creatorcontrib>Nishioka, Kenya</creatorcontrib><creatorcontrib>Meng, Hongrui</creatorcontrib><creatorcontrib>Takanashi, Masashi</creatorcontrib><creatorcontrib>Hasegawa, Iwao</creatorcontrib><creatorcontrib>Inoshita, Tsuyoshi</creatorcontrib><creatorcontrib>Shiba-Fukushima, Kahori</creatorcontrib><creatorcontrib>Li, Yuanzhe</creatorcontrib><creatorcontrib>Yoshino, Hiroyo</creatorcontrib><creatorcontrib>Mori, Akio</creatorcontrib><creatorcontrib>Okuzumi, Ayami</creatorcontrib><creatorcontrib>Yamaguchi, Akihiro</creatorcontrib><creatorcontrib>Nonaka, Risa</creatorcontrib><creatorcontrib>Izawa, Nana</creatorcontrib><creatorcontrib>Ishikawa, Kei-ichi</creatorcontrib><creatorcontrib>Saiki, Hidemoto</creatorcontrib><creatorcontrib>Morita, Masayo</creatorcontrib><creatorcontrib>Hasegawa, Masato</creatorcontrib><creatorcontrib>Hasegawa, Kazuko</creatorcontrib><creatorcontrib>Elahi, Montasir</creatorcontrib><creatorcontrib>Funayama, Manabu</creatorcontrib><creatorcontrib>Okano, Hideyuki</creatorcontrib><creatorcontrib>Akamatsu, Wado</creatorcontrib><creatorcontrib>Imai, Yuzuru</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><title>Mutations in CHCHD2 cause α-synuclein aggregation</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Abstract
Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.</description><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAUhmELgWgpLFwAyoKEkEKPf-I0I0qBIhWxwGw5znEIyk-J46HcFTfCNRFIYWTy4Od8w0vIKYUrCgmfv9TFPM_fmaB7ZEqFhJDBgu-TKSRShDIBOSFHzr0CUCl4fEgmnEqAOF5MCXvwve7LtnFB2QTpKl0tWWC0dxh8foRu23hT4fCji6LD4kcekwOrK4cnu3dGnm9vntJVuH68u0-v16HhNO5D5MijSNvcSGM1ANooAb3QVMQ51VFkmZA5SjBWZAARSCZpJjJmZZ5phshn5GLc3XTtm0fXq7p0BqtKN9h6pxgfrgSDBAZ6OVLTtc51aNWmK2vdbRUF9d1IDY3U2GjAZ7tdn9WY_9HfKAM4H0HrN_8NfQFekm8e</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Ikeda, Aya</creator><creator>Nishioka, Kenya</creator><creator>Meng, Hongrui</creator><creator>Takanashi, Masashi</creator><creator>Hasegawa, Iwao</creator><creator>Inoshita, Tsuyoshi</creator><creator>Shiba-Fukushima, Kahori</creator><creator>Li, Yuanzhe</creator><creator>Yoshino, Hiroyo</creator><creator>Mori, Akio</creator><creator>Okuzumi, Ayami</creator><creator>Yamaguchi, Akihiro</creator><creator>Nonaka, Risa</creator><creator>Izawa, Nana</creator><creator>Ishikawa, Kei-ichi</creator><creator>Saiki, Hidemoto</creator><creator>Morita, Masayo</creator><creator>Hasegawa, Masato</creator><creator>Hasegawa, Kazuko</creator><creator>Elahi, Montasir</creator><creator>Funayama, Manabu</creator><creator>Okano, Hideyuki</creator><creator>Akamatsu, Wado</creator><creator>Imai, Yuzuru</creator><creator>Hattori, Nobutaka</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20191201</creationdate><title>Mutations in CHCHD2 cause α-synuclein aggregation</title><author>Ikeda, Aya ; Nishioka, Kenya ; Meng, Hongrui ; Takanashi, Masashi ; Hasegawa, Iwao ; Inoshita, Tsuyoshi ; Shiba-Fukushima, Kahori ; Li, Yuanzhe ; Yoshino, Hiroyo ; Mori, Akio ; Okuzumi, Ayami ; Yamaguchi, Akihiro ; Nonaka, Risa ; Izawa, Nana ; Ishikawa, Kei-ichi ; Saiki, Hidemoto ; Morita, Masayo ; Hasegawa, Masato ; Hasegawa, Kazuko ; Elahi, Montasir ; Funayama, Manabu ; Okano, Hideyuki ; Akamatsu, Wado ; Imai, Yuzuru ; Hattori, Nobutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Aya</creatorcontrib><creatorcontrib>Nishioka, Kenya</creatorcontrib><creatorcontrib>Meng, Hongrui</creatorcontrib><creatorcontrib>Takanashi, Masashi</creatorcontrib><creatorcontrib>Hasegawa, Iwao</creatorcontrib><creatorcontrib>Inoshita, Tsuyoshi</creatorcontrib><creatorcontrib>Shiba-Fukushima, Kahori</creatorcontrib><creatorcontrib>Li, Yuanzhe</creatorcontrib><creatorcontrib>Yoshino, Hiroyo</creatorcontrib><creatorcontrib>Mori, Akio</creatorcontrib><creatorcontrib>Okuzumi, Ayami</creatorcontrib><creatorcontrib>Yamaguchi, Akihiro</creatorcontrib><creatorcontrib>Nonaka, Risa</creatorcontrib><creatorcontrib>Izawa, Nana</creatorcontrib><creatorcontrib>Ishikawa, Kei-ichi</creatorcontrib><creatorcontrib>Saiki, Hidemoto</creatorcontrib><creatorcontrib>Morita, Masayo</creatorcontrib><creatorcontrib>Hasegawa, Masato</creatorcontrib><creatorcontrib>Hasegawa, Kazuko</creatorcontrib><creatorcontrib>Elahi, Montasir</creatorcontrib><creatorcontrib>Funayama, Manabu</creatorcontrib><creatorcontrib>Okano, Hideyuki</creatorcontrib><creatorcontrib>Akamatsu, Wado</creatorcontrib><creatorcontrib>Imai, Yuzuru</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Aya</au><au>Nishioka, Kenya</au><au>Meng, Hongrui</au><au>Takanashi, Masashi</au><au>Hasegawa, Iwao</au><au>Inoshita, Tsuyoshi</au><au>Shiba-Fukushima, Kahori</au><au>Li, Yuanzhe</au><au>Yoshino, Hiroyo</au><au>Mori, Akio</au><au>Okuzumi, Ayami</au><au>Yamaguchi, Akihiro</au><au>Nonaka, Risa</au><au>Izawa, Nana</au><au>Ishikawa, Kei-ichi</au><au>Saiki, Hidemoto</au><au>Morita, Masayo</au><au>Hasegawa, Masato</au><au>Hasegawa, Kazuko</au><au>Elahi, Montasir</au><au>Funayama, Manabu</au><au>Okano, Hideyuki</au><au>Akamatsu, Wado</au><au>Imai, Yuzuru</au><au>Hattori, Nobutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutations in CHCHD2 cause α-synuclein aggregation</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>28</volume><issue>23</issue><spage>3895</spage><epage>3911</epage><pages>3895-3911</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Abstract
Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31600778</pmid><doi>10.1093/hmg/ddz241</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2019-12, Vol.28 (23), p.3895-3911 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_proquest_miscellaneous_2305042090 |
source | Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list) |
title | Mutations in CHCHD2 cause α-synuclein aggregation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutations%20in%20CHCHD2%20cause%20%CE%B1-synuclein%20aggregation&rft.jtitle=Human%20molecular%20genetics&rft.au=Ikeda,%20Aya&rft.date=2019-12-01&rft.volume=28&rft.issue=23&rft.spage=3895&rft.epage=3911&rft.pages=3895-3911&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddz241&rft_dat=%3Cproquest_cross%3E2305042090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305042090&rft_id=info:pmid/31600778&rft_oup_id=10.1093/hmg/ddz241&rfr_iscdi=true |