Loading…

Mutations in CHCHD2 cause α-synuclein aggregation

Abstract Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here,...

Full description

Saved in:
Bibliographic Details
Published in:Human molecular genetics 2019-12, Vol.28 (23), p.3895-3911
Main Authors: Ikeda, Aya, Nishioka, Kenya, Meng, Hongrui, Takanashi, Masashi, Hasegawa, Iwao, Inoshita, Tsuyoshi, Shiba-Fukushima, Kahori, Li, Yuanzhe, Yoshino, Hiroyo, Mori, Akio, Okuzumi, Ayami, Yamaguchi, Akihiro, Nonaka, Risa, Izawa, Nana, Ishikawa, Kei-ichi, Saiki, Hidemoto, Morita, Masayo, Hasegawa, Masato, Hasegawa, Kazuko, Elahi, Montasir, Funayama, Manabu, Okano, Hideyuki, Akamatsu, Wado, Imai, Yuzuru, Hattori, Nobutaka
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3
cites cdi_FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3
container_end_page 3911
container_issue 23
container_start_page 3895
container_title Human molecular genetics
container_volume 28
creator Ikeda, Aya
Nishioka, Kenya
Meng, Hongrui
Takanashi, Masashi
Hasegawa, Iwao
Inoshita, Tsuyoshi
Shiba-Fukushima, Kahori
Li, Yuanzhe
Yoshino, Hiroyo
Mori, Akio
Okuzumi, Ayami
Yamaguchi, Akihiro
Nonaka, Risa
Izawa, Nana
Ishikawa, Kei-ichi
Saiki, Hidemoto
Morita, Masayo
Hasegawa, Masato
Hasegawa, Kazuko
Elahi, Montasir
Funayama, Manabu
Okano, Hideyuki
Akamatsu, Wado
Imai, Yuzuru
Hattori, Nobutaka
description Abstract Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.
doi_str_mv 10.1093/hmg/ddz241
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2305042090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddz241</oup_id><sourcerecordid>2305042090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3</originalsourceid><addsrcrecordid>eNp90L1OwzAUhmELgWgpLFwAyoKEkEKPf-I0I0qBIhWxwGw5znEIyk-J46HcFTfCNRFIYWTy4Od8w0vIKYUrCgmfv9TFPM_fmaB7ZEqFhJDBgu-TKSRShDIBOSFHzr0CUCl4fEgmnEqAOF5MCXvwve7LtnFB2QTpKl0tWWC0dxh8foRu23hT4fCji6LD4kcekwOrK4cnu3dGnm9vntJVuH68u0-v16HhNO5D5MijSNvcSGM1ANooAb3QVMQ51VFkmZA5SjBWZAARSCZpJjJmZZ5phshn5GLc3XTtm0fXq7p0BqtKN9h6pxgfrgSDBAZ6OVLTtc51aNWmK2vdbRUF9d1IDY3U2GjAZ7tdn9WY_9HfKAM4H0HrN_8NfQFekm8e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305042090</pqid></control><display><type>article</type><title>Mutations in CHCHD2 cause α-synuclein aggregation</title><source>Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)</source><creator>Ikeda, Aya ; Nishioka, Kenya ; Meng, Hongrui ; Takanashi, Masashi ; Hasegawa, Iwao ; Inoshita, Tsuyoshi ; Shiba-Fukushima, Kahori ; Li, Yuanzhe ; Yoshino, Hiroyo ; Mori, Akio ; Okuzumi, Ayami ; Yamaguchi, Akihiro ; Nonaka, Risa ; Izawa, Nana ; Ishikawa, Kei-ichi ; Saiki, Hidemoto ; Morita, Masayo ; Hasegawa, Masato ; Hasegawa, Kazuko ; Elahi, Montasir ; Funayama, Manabu ; Okano, Hideyuki ; Akamatsu, Wado ; Imai, Yuzuru ; Hattori, Nobutaka</creator><creatorcontrib>Ikeda, Aya ; Nishioka, Kenya ; Meng, Hongrui ; Takanashi, Masashi ; Hasegawa, Iwao ; Inoshita, Tsuyoshi ; Shiba-Fukushima, Kahori ; Li, Yuanzhe ; Yoshino, Hiroyo ; Mori, Akio ; Okuzumi, Ayami ; Yamaguchi, Akihiro ; Nonaka, Risa ; Izawa, Nana ; Ishikawa, Kei-ichi ; Saiki, Hidemoto ; Morita, Masayo ; Hasegawa, Masato ; Hasegawa, Kazuko ; Elahi, Montasir ; Funayama, Manabu ; Okano, Hideyuki ; Akamatsu, Wado ; Imai, Yuzuru ; Hattori, Nobutaka</creatorcontrib><description>Abstract Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddz241</identifier><identifier>PMID: 31600778</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Human molecular genetics, 2019-12, Vol.28 (23), p.3895-3911</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3</citedby><cites>FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31600778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikeda, Aya</creatorcontrib><creatorcontrib>Nishioka, Kenya</creatorcontrib><creatorcontrib>Meng, Hongrui</creatorcontrib><creatorcontrib>Takanashi, Masashi</creatorcontrib><creatorcontrib>Hasegawa, Iwao</creatorcontrib><creatorcontrib>Inoshita, Tsuyoshi</creatorcontrib><creatorcontrib>Shiba-Fukushima, Kahori</creatorcontrib><creatorcontrib>Li, Yuanzhe</creatorcontrib><creatorcontrib>Yoshino, Hiroyo</creatorcontrib><creatorcontrib>Mori, Akio</creatorcontrib><creatorcontrib>Okuzumi, Ayami</creatorcontrib><creatorcontrib>Yamaguchi, Akihiro</creatorcontrib><creatorcontrib>Nonaka, Risa</creatorcontrib><creatorcontrib>Izawa, Nana</creatorcontrib><creatorcontrib>Ishikawa, Kei-ichi</creatorcontrib><creatorcontrib>Saiki, Hidemoto</creatorcontrib><creatorcontrib>Morita, Masayo</creatorcontrib><creatorcontrib>Hasegawa, Masato</creatorcontrib><creatorcontrib>Hasegawa, Kazuko</creatorcontrib><creatorcontrib>Elahi, Montasir</creatorcontrib><creatorcontrib>Funayama, Manabu</creatorcontrib><creatorcontrib>Okano, Hideyuki</creatorcontrib><creatorcontrib>Akamatsu, Wado</creatorcontrib><creatorcontrib>Imai, Yuzuru</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><title>Mutations in CHCHD2 cause α-synuclein aggregation</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Abstract Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.</description><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAUhmELgWgpLFwAyoKEkEKPf-I0I0qBIhWxwGw5znEIyk-J46HcFTfCNRFIYWTy4Od8w0vIKYUrCgmfv9TFPM_fmaB7ZEqFhJDBgu-TKSRShDIBOSFHzr0CUCl4fEgmnEqAOF5MCXvwve7LtnFB2QTpKl0tWWC0dxh8foRu23hT4fCji6LD4kcekwOrK4cnu3dGnm9vntJVuH68u0-v16HhNO5D5MijSNvcSGM1ANooAb3QVMQ51VFkmZA5SjBWZAARSCZpJjJmZZ5phshn5GLc3XTtm0fXq7p0BqtKN9h6pxgfrgSDBAZ6OVLTtc51aNWmK2vdbRUF9d1IDY3U2GjAZ7tdn9WY_9HfKAM4H0HrN_8NfQFekm8e</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Ikeda, Aya</creator><creator>Nishioka, Kenya</creator><creator>Meng, Hongrui</creator><creator>Takanashi, Masashi</creator><creator>Hasegawa, Iwao</creator><creator>Inoshita, Tsuyoshi</creator><creator>Shiba-Fukushima, Kahori</creator><creator>Li, Yuanzhe</creator><creator>Yoshino, Hiroyo</creator><creator>Mori, Akio</creator><creator>Okuzumi, Ayami</creator><creator>Yamaguchi, Akihiro</creator><creator>Nonaka, Risa</creator><creator>Izawa, Nana</creator><creator>Ishikawa, Kei-ichi</creator><creator>Saiki, Hidemoto</creator><creator>Morita, Masayo</creator><creator>Hasegawa, Masato</creator><creator>Hasegawa, Kazuko</creator><creator>Elahi, Montasir</creator><creator>Funayama, Manabu</creator><creator>Okano, Hideyuki</creator><creator>Akamatsu, Wado</creator><creator>Imai, Yuzuru</creator><creator>Hattori, Nobutaka</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20191201</creationdate><title>Mutations in CHCHD2 cause α-synuclein aggregation</title><author>Ikeda, Aya ; Nishioka, Kenya ; Meng, Hongrui ; Takanashi, Masashi ; Hasegawa, Iwao ; Inoshita, Tsuyoshi ; Shiba-Fukushima, Kahori ; Li, Yuanzhe ; Yoshino, Hiroyo ; Mori, Akio ; Okuzumi, Ayami ; Yamaguchi, Akihiro ; Nonaka, Risa ; Izawa, Nana ; Ishikawa, Kei-ichi ; Saiki, Hidemoto ; Morita, Masayo ; Hasegawa, Masato ; Hasegawa, Kazuko ; Elahi, Montasir ; Funayama, Manabu ; Okano, Hideyuki ; Akamatsu, Wado ; Imai, Yuzuru ; Hattori, Nobutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Aya</creatorcontrib><creatorcontrib>Nishioka, Kenya</creatorcontrib><creatorcontrib>Meng, Hongrui</creatorcontrib><creatorcontrib>Takanashi, Masashi</creatorcontrib><creatorcontrib>Hasegawa, Iwao</creatorcontrib><creatorcontrib>Inoshita, Tsuyoshi</creatorcontrib><creatorcontrib>Shiba-Fukushima, Kahori</creatorcontrib><creatorcontrib>Li, Yuanzhe</creatorcontrib><creatorcontrib>Yoshino, Hiroyo</creatorcontrib><creatorcontrib>Mori, Akio</creatorcontrib><creatorcontrib>Okuzumi, Ayami</creatorcontrib><creatorcontrib>Yamaguchi, Akihiro</creatorcontrib><creatorcontrib>Nonaka, Risa</creatorcontrib><creatorcontrib>Izawa, Nana</creatorcontrib><creatorcontrib>Ishikawa, Kei-ichi</creatorcontrib><creatorcontrib>Saiki, Hidemoto</creatorcontrib><creatorcontrib>Morita, Masayo</creatorcontrib><creatorcontrib>Hasegawa, Masato</creatorcontrib><creatorcontrib>Hasegawa, Kazuko</creatorcontrib><creatorcontrib>Elahi, Montasir</creatorcontrib><creatorcontrib>Funayama, Manabu</creatorcontrib><creatorcontrib>Okano, Hideyuki</creatorcontrib><creatorcontrib>Akamatsu, Wado</creatorcontrib><creatorcontrib>Imai, Yuzuru</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Aya</au><au>Nishioka, Kenya</au><au>Meng, Hongrui</au><au>Takanashi, Masashi</au><au>Hasegawa, Iwao</au><au>Inoshita, Tsuyoshi</au><au>Shiba-Fukushima, Kahori</au><au>Li, Yuanzhe</au><au>Yoshino, Hiroyo</au><au>Mori, Akio</au><au>Okuzumi, Ayami</au><au>Yamaguchi, Akihiro</au><au>Nonaka, Risa</au><au>Izawa, Nana</au><au>Ishikawa, Kei-ichi</au><au>Saiki, Hidemoto</au><au>Morita, Masayo</au><au>Hasegawa, Masato</au><au>Hasegawa, Kazuko</au><au>Elahi, Montasir</au><au>Funayama, Manabu</au><au>Okano, Hideyuki</au><au>Akamatsu, Wado</au><au>Imai, Yuzuru</au><au>Hattori, Nobutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutations in CHCHD2 cause α-synuclein aggregation</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>28</volume><issue>23</issue><spage>3895</spage><epage>3911</epage><pages>3895-3911</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Abstract Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson’s disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31600778</pmid><doi>10.1093/hmg/ddz241</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2019-12, Vol.28 (23), p.3895-3911
issn 0964-6906
1460-2083
language eng
recordid cdi_proquest_miscellaneous_2305042090
source Oxford University Press:Jisc Collections:OUP Read and Publish 2024-2025 (2024 collection) (Reading list)
title Mutations in CHCHD2 cause α-synuclein aggregation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutations%20in%20CHCHD2%20cause%20%CE%B1-synuclein%20aggregation&rft.jtitle=Human%20molecular%20genetics&rft.au=Ikeda,%20Aya&rft.date=2019-12-01&rft.volume=28&rft.issue=23&rft.spage=3895&rft.epage=3911&rft.pages=3895-3911&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddz241&rft_dat=%3Cproquest_cross%3E2305042090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-e3e355afdc6cfa00ef590a8a147d1a55f246de60cf4b00506261b4b2f6dba2ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305042090&rft_id=info:pmid/31600778&rft_oup_id=10.1093/hmg/ddz241&rfr_iscdi=true