Loading…
Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient
A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental va...
Saved in:
Published in: | Ecology letters 2019-12, Vol.22 (12), p.2077-2086 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753 |
---|---|
cites | cdi_FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753 |
container_end_page | 2086 |
container_issue | 12 |
container_start_page | 2077 |
container_title | Ecology letters |
container_volume | 22 |
creator | Simonsen, Anna K. Barrett, Luke G. Thrall, Peter H. Prober, Suzanne M. Chase, Jonathan |
description | A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental variation among microbial taxa. Here, we present an analytical framework that infers clusters along genome‐based microbial phylogenies according to shared environmental responses. The advantage of our approach is the ability to identify genomic clusters that best fit complex environmental information whilst characterising cluster niches through model predictions. We apply our method to determine climate‐associated ecotypes in populations of nitrogen‐fixing symbionts using whole genomes, explicitly sampled to detect climate differentiation across a heterogeneous landscape. Although soil and plant host characteristics strongly influence distribution patterns of inferred ecotypes, our flexible statistical method enabled us to identify climate‐associated genomic clusters using environmental data, providing solid support for ecological specialisation in soil symbionts. |
doi_str_mv | 10.1111/ele.13389 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2305795062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312660410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753</originalsourceid><addsrcrecordid>eNp10b1OwzAQB3ALgWgpDLwAssQCQ1s7zpdHVJUPqYKlA1vk2JcolRMXOynqxiPwjDwJblMYkPByHn7-y3eH0CUlE-rPFDRMKGMpP0JDGsZ0TIIwPf69s9cBOnNuRQgNeEJP0YDRmAYxoUPUPpsNaFwbBfrr4zMXDhSWunMt2KopsYUNCO0wSKNNWUmh9RarqijAQtNWovU8F3KnhcYlNKYGh4W0xvmCtbAl-Lyq9hKXVqjKPztHJ4UPhYtDHaHl_Xw5exwvXh6eZneLsWQR4-OEShZyUGnAVAgRU0IQmQIPJeEizCkHUJIniotACZqShLIilwoUiSUkERuhmz52bc1bB67N6spJ0Fo0YDqXBYxECY9IHHh6_YeuTGcb_zmv_KhiElLi1W2v9u1ZKLK19Z3ZbUZJtttE5jeR7Tfh7dUhsctrUL_yZ_QeTHvwXmnY_p-UzRfzPvIbFYiVdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312660410</pqid></control><display><type>article</type><title>Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient</title><source>Wiley</source><creator>Simonsen, Anna K. ; Barrett, Luke G. ; Thrall, Peter H. ; Prober, Suzanne M. ; Chase, Jonathan</creator><contributor>Chase, Jonathan</contributor><creatorcontrib>Simonsen, Anna K. ; Barrett, Luke G. ; Thrall, Peter H. ; Prober, Suzanne M. ; Chase, Jonathan ; Chase, Jonathan</creatorcontrib><description>A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental variation among microbial taxa. Here, we present an analytical framework that infers clusters along genome‐based microbial phylogenies according to shared environmental responses. The advantage of our approach is the ability to identify genomic clusters that best fit complex environmental information whilst characterising cluster niches through model predictions. We apply our method to determine climate‐associated ecotypes in populations of nitrogen‐fixing symbionts using whole genomes, explicitly sampled to detect climate differentiation across a heterogeneous landscape. Although soil and plant host characteristics strongly influence distribution patterns of inferred ecotypes, our flexible statistical method enabled us to identify climate‐associated genomic clusters using environmental data, providing solid support for ecological specialisation in soil symbionts.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/ele.13389</identifier><identifier>PMID: 31612601</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacteria ; Climate ; Clustering ; Differentiation ; Distribution patterns ; ecological differentiation ; Ecology ; Ecotype ; Ecotypes ; Environmental information ; Genome, Bacterial ; Genomes ; Host plants ; Landscape ; Microorganisms ; Niches ; Phylogeny ; soil ; Soil Microbiology ; Soils ; symbiont ; Symbionts</subject><ispartof>Ecology letters, 2019-12, Vol.22 (12), p.2077-2086</ispartof><rights>2019 John Wiley & Sons Ltd/CNRS</rights><rights>2019 John Wiley & Sons Ltd/CNRS.</rights><rights>Copyright © 2019 John Wiley & Sons Ltd/CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753</citedby><cites>FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753</cites><orcidid>0000-0002-5091-261X ; 0000-0001-6530-0731 ; 0000-0002-6518-239X ; 0000-0003-1670-4240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31612601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chase, Jonathan</contributor><creatorcontrib>Simonsen, Anna K.</creatorcontrib><creatorcontrib>Barrett, Luke G.</creatorcontrib><creatorcontrib>Thrall, Peter H.</creatorcontrib><creatorcontrib>Prober, Suzanne M.</creatorcontrib><creatorcontrib>Chase, Jonathan</creatorcontrib><title>Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental variation among microbial taxa. Here, we present an analytical framework that infers clusters along genome‐based microbial phylogenies according to shared environmental responses. The advantage of our approach is the ability to identify genomic clusters that best fit complex environmental information whilst characterising cluster niches through model predictions. We apply our method to determine climate‐associated ecotypes in populations of nitrogen‐fixing symbionts using whole genomes, explicitly sampled to detect climate differentiation across a heterogeneous landscape. Although soil and plant host characteristics strongly influence distribution patterns of inferred ecotypes, our flexible statistical method enabled us to identify climate‐associated genomic clusters using environmental data, providing solid support for ecological specialisation in soil symbionts.</description><subject>Bacteria</subject><subject>Climate</subject><subject>Clustering</subject><subject>Differentiation</subject><subject>Distribution patterns</subject><subject>ecological differentiation</subject><subject>Ecology</subject><subject>Ecotype</subject><subject>Ecotypes</subject><subject>Environmental information</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Host plants</subject><subject>Landscape</subject><subject>Microorganisms</subject><subject>Niches</subject><subject>Phylogeny</subject><subject>soil</subject><subject>Soil Microbiology</subject><subject>Soils</subject><subject>symbiont</subject><subject>Symbionts</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10b1OwzAQB3ALgWgpDLwAssQCQ1s7zpdHVJUPqYKlA1vk2JcolRMXOynqxiPwjDwJblMYkPByHn7-y3eH0CUlE-rPFDRMKGMpP0JDGsZ0TIIwPf69s9cBOnNuRQgNeEJP0YDRmAYxoUPUPpsNaFwbBfrr4zMXDhSWunMt2KopsYUNCO0wSKNNWUmh9RarqijAQtNWovU8F3KnhcYlNKYGh4W0xvmCtbAl-Lyq9hKXVqjKPztHJ4UPhYtDHaHl_Xw5exwvXh6eZneLsWQR4-OEShZyUGnAVAgRU0IQmQIPJeEizCkHUJIniotACZqShLIilwoUiSUkERuhmz52bc1bB67N6spJ0Fo0YDqXBYxECY9IHHh6_YeuTGcb_zmv_KhiElLi1W2v9u1ZKLK19Z3ZbUZJtttE5jeR7Tfh7dUhsctrUL_yZ_QeTHvwXmnY_p-UzRfzPvIbFYiVdA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Simonsen, Anna K.</creator><creator>Barrett, Luke G.</creator><creator>Thrall, Peter H.</creator><creator>Prober, Suzanne M.</creator><creator>Chase, Jonathan</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5091-261X</orcidid><orcidid>https://orcid.org/0000-0001-6530-0731</orcidid><orcidid>https://orcid.org/0000-0002-6518-239X</orcidid><orcidid>https://orcid.org/0000-0003-1670-4240</orcidid></search><sort><creationdate>201912</creationdate><title>Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient</title><author>Simonsen, Anna K. ; Barrett, Luke G. ; Thrall, Peter H. ; Prober, Suzanne M. ; Chase, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Climate</topic><topic>Clustering</topic><topic>Differentiation</topic><topic>Distribution patterns</topic><topic>ecological differentiation</topic><topic>Ecology</topic><topic>Ecotype</topic><topic>Ecotypes</topic><topic>Environmental information</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Host plants</topic><topic>Landscape</topic><topic>Microorganisms</topic><topic>Niches</topic><topic>Phylogeny</topic><topic>soil</topic><topic>Soil Microbiology</topic><topic>Soils</topic><topic>symbiont</topic><topic>Symbionts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simonsen, Anna K.</creatorcontrib><creatorcontrib>Barrett, Luke G.</creatorcontrib><creatorcontrib>Thrall, Peter H.</creatorcontrib><creatorcontrib>Prober, Suzanne M.</creatorcontrib><creatorcontrib>Chase, Jonathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simonsen, Anna K.</au><au>Barrett, Luke G.</au><au>Thrall, Peter H.</au><au>Prober, Suzanne M.</au><au>Chase, Jonathan</au><au>Chase, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2019-12</date><risdate>2019</risdate><volume>22</volume><issue>12</issue><spage>2077</spage><epage>2086</epage><pages>2077-2086</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental variation among microbial taxa. Here, we present an analytical framework that infers clusters along genome‐based microbial phylogenies according to shared environmental responses. The advantage of our approach is the ability to identify genomic clusters that best fit complex environmental information whilst characterising cluster niches through model predictions. We apply our method to determine climate‐associated ecotypes in populations of nitrogen‐fixing symbionts using whole genomes, explicitly sampled to detect climate differentiation across a heterogeneous landscape. Although soil and plant host characteristics strongly influence distribution patterns of inferred ecotypes, our flexible statistical method enabled us to identify climate‐associated genomic clusters using environmental data, providing solid support for ecological specialisation in soil symbionts.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>31612601</pmid><doi>10.1111/ele.13389</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5091-261X</orcidid><orcidid>https://orcid.org/0000-0001-6530-0731</orcidid><orcidid>https://orcid.org/0000-0002-6518-239X</orcidid><orcidid>https://orcid.org/0000-0003-1670-4240</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1461-023X |
ispartof | Ecology letters, 2019-12, Vol.22 (12), p.2077-2086 |
issn | 1461-023X 1461-0248 |
language | eng |
recordid | cdi_proquest_miscellaneous_2305795062 |
source | Wiley |
subjects | Bacteria Climate Clustering Differentiation Distribution patterns ecological differentiation Ecology Ecotype Ecotypes Environmental information Genome, Bacterial Genomes Host plants Landscape Microorganisms Niches Phylogeny soil Soil Microbiology Soils symbiont Symbionts |
title | Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20model%E2%80%90based%20clustering%20reveals%20ecologically%20differentiated%20bacterial%20genomes%20across%20a%20large%20climate%20gradient&rft.jtitle=Ecology%20letters&rft.au=Simonsen,%20Anna%20K.&rft.date=2019-12&rft.volume=22&rft.issue=12&rft.spage=2077&rft.epage=2086&rft.pages=2077-2086&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/ele.13389&rft_dat=%3Cproquest_cross%3E2312660410%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312660410&rft_id=info:pmid/31612601&rfr_iscdi=true |