Loading…

Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient

A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental va...

Full description

Saved in:
Bibliographic Details
Published in:Ecology letters 2019-12, Vol.22 (12), p.2077-2086
Main Authors: Simonsen, Anna K., Barrett, Luke G., Thrall, Peter H., Prober, Suzanne M., Chase, Jonathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753
cites cdi_FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753
container_end_page 2086
container_issue 12
container_start_page 2077
container_title Ecology letters
container_volume 22
creator Simonsen, Anna K.
Barrett, Luke G.
Thrall, Peter H.
Prober, Suzanne M.
Chase, Jonathan
description A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental variation among microbial taxa. Here, we present an analytical framework that infers clusters along genome‐based microbial phylogenies according to shared environmental responses. The advantage of our approach is the ability to identify genomic clusters that best fit complex environmental information whilst characterising cluster niches through model predictions. We apply our method to determine climate‐associated ecotypes in populations of nitrogen‐fixing symbionts using whole genomes, explicitly sampled to detect climate differentiation across a heterogeneous landscape. Although soil and plant host characteristics strongly influence distribution patterns of inferred ecotypes, our flexible statistical method enabled us to identify climate‐associated genomic clusters using environmental data, providing solid support for ecological specialisation in soil symbionts.
doi_str_mv 10.1111/ele.13389
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2305795062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312660410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753</originalsourceid><addsrcrecordid>eNp10b1OwzAQB3ALgWgpDLwAssQCQ1s7zpdHVJUPqYKlA1vk2JcolRMXOynqxiPwjDwJblMYkPByHn7-y3eH0CUlE-rPFDRMKGMpP0JDGsZ0TIIwPf69s9cBOnNuRQgNeEJP0YDRmAYxoUPUPpsNaFwbBfrr4zMXDhSWunMt2KopsYUNCO0wSKNNWUmh9RarqijAQtNWovU8F3KnhcYlNKYGh4W0xvmCtbAl-Lyq9hKXVqjKPztHJ4UPhYtDHaHl_Xw5exwvXh6eZneLsWQR4-OEShZyUGnAVAgRU0IQmQIPJeEizCkHUJIniotACZqShLIilwoUiSUkERuhmz52bc1bB67N6spJ0Fo0YDqXBYxECY9IHHh6_YeuTGcb_zmv_KhiElLi1W2v9u1ZKLK19Z3ZbUZJtttE5jeR7Tfh7dUhsctrUL_yZ_QeTHvwXmnY_p-UzRfzPvIbFYiVdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312660410</pqid></control><display><type>article</type><title>Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient</title><source>Wiley</source><creator>Simonsen, Anna K. ; Barrett, Luke G. ; Thrall, Peter H. ; Prober, Suzanne M. ; Chase, Jonathan</creator><contributor>Chase, Jonathan</contributor><creatorcontrib>Simonsen, Anna K. ; Barrett, Luke G. ; Thrall, Peter H. ; Prober, Suzanne M. ; Chase, Jonathan ; Chase, Jonathan</creatorcontrib><description>A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental variation among microbial taxa. Here, we present an analytical framework that infers clusters along genome‐based microbial phylogenies according to shared environmental responses. The advantage of our approach is the ability to identify genomic clusters that best fit complex environmental information whilst characterising cluster niches through model predictions. We apply our method to determine climate‐associated ecotypes in populations of nitrogen‐fixing symbionts using whole genomes, explicitly sampled to detect climate differentiation across a heterogeneous landscape. Although soil and plant host characteristics strongly influence distribution patterns of inferred ecotypes, our flexible statistical method enabled us to identify climate‐associated genomic clusters using environmental data, providing solid support for ecological specialisation in soil symbionts.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/ele.13389</identifier><identifier>PMID: 31612601</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacteria ; Climate ; Clustering ; Differentiation ; Distribution patterns ; ecological differentiation ; Ecology ; Ecotype ; Ecotypes ; Environmental information ; Genome, Bacterial ; Genomes ; Host plants ; Landscape ; Microorganisms ; Niches ; Phylogeny ; soil ; Soil Microbiology ; Soils ; symbiont ; Symbionts</subject><ispartof>Ecology letters, 2019-12, Vol.22 (12), p.2077-2086</ispartof><rights>2019 John Wiley &amp; Sons Ltd/CNRS</rights><rights>2019 John Wiley &amp; Sons Ltd/CNRS.</rights><rights>Copyright © 2019 John Wiley &amp; Sons Ltd/CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753</citedby><cites>FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753</cites><orcidid>0000-0002-5091-261X ; 0000-0001-6530-0731 ; 0000-0002-6518-239X ; 0000-0003-1670-4240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31612601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chase, Jonathan</contributor><creatorcontrib>Simonsen, Anna K.</creatorcontrib><creatorcontrib>Barrett, Luke G.</creatorcontrib><creatorcontrib>Thrall, Peter H.</creatorcontrib><creatorcontrib>Prober, Suzanne M.</creatorcontrib><creatorcontrib>Chase, Jonathan</creatorcontrib><title>Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental variation among microbial taxa. Here, we present an analytical framework that infers clusters along genome‐based microbial phylogenies according to shared environmental responses. The advantage of our approach is the ability to identify genomic clusters that best fit complex environmental information whilst characterising cluster niches through model predictions. We apply our method to determine climate‐associated ecotypes in populations of nitrogen‐fixing symbionts using whole genomes, explicitly sampled to detect climate differentiation across a heterogeneous landscape. Although soil and plant host characteristics strongly influence distribution patterns of inferred ecotypes, our flexible statistical method enabled us to identify climate‐associated genomic clusters using environmental data, providing solid support for ecological specialisation in soil symbionts.</description><subject>Bacteria</subject><subject>Climate</subject><subject>Clustering</subject><subject>Differentiation</subject><subject>Distribution patterns</subject><subject>ecological differentiation</subject><subject>Ecology</subject><subject>Ecotype</subject><subject>Ecotypes</subject><subject>Environmental information</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Host plants</subject><subject>Landscape</subject><subject>Microorganisms</subject><subject>Niches</subject><subject>Phylogeny</subject><subject>soil</subject><subject>Soil Microbiology</subject><subject>Soils</subject><subject>symbiont</subject><subject>Symbionts</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10b1OwzAQB3ALgWgpDLwAssQCQ1s7zpdHVJUPqYKlA1vk2JcolRMXOynqxiPwjDwJblMYkPByHn7-y3eH0CUlE-rPFDRMKGMpP0JDGsZ0TIIwPf69s9cBOnNuRQgNeEJP0YDRmAYxoUPUPpsNaFwbBfrr4zMXDhSWunMt2KopsYUNCO0wSKNNWUmh9RarqijAQtNWovU8F3KnhcYlNKYGh4W0xvmCtbAl-Lyq9hKXVqjKPztHJ4UPhYtDHaHl_Xw5exwvXh6eZneLsWQR4-OEShZyUGnAVAgRU0IQmQIPJeEizCkHUJIniotACZqShLIilwoUiSUkERuhmz52bc1bB67N6spJ0Fo0YDqXBYxECY9IHHh6_YeuTGcb_zmv_KhiElLi1W2v9u1ZKLK19Z3ZbUZJtttE5jeR7Tfh7dUhsctrUL_yZ_QeTHvwXmnY_p-UzRfzPvIbFYiVdA</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Simonsen, Anna K.</creator><creator>Barrett, Luke G.</creator><creator>Thrall, Peter H.</creator><creator>Prober, Suzanne M.</creator><creator>Chase, Jonathan</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5091-261X</orcidid><orcidid>https://orcid.org/0000-0001-6530-0731</orcidid><orcidid>https://orcid.org/0000-0002-6518-239X</orcidid><orcidid>https://orcid.org/0000-0003-1670-4240</orcidid></search><sort><creationdate>201912</creationdate><title>Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient</title><author>Simonsen, Anna K. ; Barrett, Luke G. ; Thrall, Peter H. ; Prober, Suzanne M. ; Chase, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Climate</topic><topic>Clustering</topic><topic>Differentiation</topic><topic>Distribution patterns</topic><topic>ecological differentiation</topic><topic>Ecology</topic><topic>Ecotype</topic><topic>Ecotypes</topic><topic>Environmental information</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Host plants</topic><topic>Landscape</topic><topic>Microorganisms</topic><topic>Niches</topic><topic>Phylogeny</topic><topic>soil</topic><topic>Soil Microbiology</topic><topic>Soils</topic><topic>symbiont</topic><topic>Symbionts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simonsen, Anna K.</creatorcontrib><creatorcontrib>Barrett, Luke G.</creatorcontrib><creatorcontrib>Thrall, Peter H.</creatorcontrib><creatorcontrib>Prober, Suzanne M.</creatorcontrib><creatorcontrib>Chase, Jonathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simonsen, Anna K.</au><au>Barrett, Luke G.</au><au>Thrall, Peter H.</au><au>Prober, Suzanne M.</au><au>Chase, Jonathan</au><au>Chase, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2019-12</date><risdate>2019</risdate><volume>22</volume><issue>12</issue><spage>2077</spage><epage>2086</epage><pages>2077-2086</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental variation among microbial taxa. Here, we present an analytical framework that infers clusters along genome‐based microbial phylogenies according to shared environmental responses. The advantage of our approach is the ability to identify genomic clusters that best fit complex environmental information whilst characterising cluster niches through model predictions. We apply our method to determine climate‐associated ecotypes in populations of nitrogen‐fixing symbionts using whole genomes, explicitly sampled to detect climate differentiation across a heterogeneous landscape. Although soil and plant host characteristics strongly influence distribution patterns of inferred ecotypes, our flexible statistical method enabled us to identify climate‐associated genomic clusters using environmental data, providing solid support for ecological specialisation in soil symbionts.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>31612601</pmid><doi>10.1111/ele.13389</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5091-261X</orcidid><orcidid>https://orcid.org/0000-0001-6530-0731</orcidid><orcidid>https://orcid.org/0000-0002-6518-239X</orcidid><orcidid>https://orcid.org/0000-0003-1670-4240</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1461-023X
ispartof Ecology letters, 2019-12, Vol.22 (12), p.2077-2086
issn 1461-023X
1461-0248
language eng
recordid cdi_proquest_miscellaneous_2305795062
source Wiley
subjects Bacteria
Climate
Clustering
Differentiation
Distribution patterns
ecological differentiation
Ecology
Ecotype
Ecotypes
Environmental information
Genome, Bacterial
Genomes
Host plants
Landscape
Microorganisms
Niches
Phylogeny
soil
Soil Microbiology
Soils
symbiont
Symbionts
title Novel model‐based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20model%E2%80%90based%20clustering%20reveals%20ecologically%20differentiated%20bacterial%20genomes%20across%20a%20large%20climate%20gradient&rft.jtitle=Ecology%20letters&rft.au=Simonsen,%20Anna%20K.&rft.date=2019-12&rft.volume=22&rft.issue=12&rft.spage=2077&rft.epage=2086&rft.pages=2077-2086&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/ele.13389&rft_dat=%3Cproquest_cross%3E2312660410%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3539-71c349ed823d4e53daa0c8e94c09a4b19eedc97d9a2da180713fbcded06ce753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312660410&rft_id=info:pmid/31612601&rfr_iscdi=true