Loading…
Joule-Heated and Suspended Silicon Nanowire Based Sensor for Low-Power and Stable Hydrogen Detection
We developed self-heated, suspended, and palladium-decorated silicon nanowires (Pd-SiNWs) for high-performance hydrogen (H2) gas sensing with low power consumption and high stability against diverse environmental noises. To prepare the Pd-SiNWs, SiNWs were fabricated by conventional complementary me...
Saved in:
Published in: | ACS applied materials & interfaces 2019-11, Vol.11 (45), p.42349-42357 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We developed self-heated, suspended, and palladium-decorated silicon nanowires (Pd-SiNWs) for high-performance hydrogen (H2) gas sensing with low power consumption and high stability against diverse environmental noises. To prepare the Pd-SiNWs, SiNWs were fabricated by conventional complementary metal–oxide–semiconductor (CMOS) processes, and Pd nanoparticles were coated on the SiNWs by a physical vapor deposition method. Suspended Pd-SiNWs were simply obtained by etching buried oxide layer and Pd deposition. Joule heating of Pd-SiNW ( |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b15111 |