Loading…

Dangling Bonds in Hexagonal Boron Nitride as Single-Photon Emitters

Hexagonal boron nitride has been found to host color centers that exhibit single-photon emission, but the microscopic origin of these emitters is unknown. We propose boron dangling bonds as the likely source of the observed single-photon emission around 2 eV. An optical transition where an electron...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2019-09, Vol.123 (12), p.1-127401, Article 127401
Main Authors: Turiansky, Mark E., Alkauskas, Audrius, Bassett, Lee C., Van de Walle, Chris G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hexagonal boron nitride has been found to host color centers that exhibit single-photon emission, but the microscopic origin of these emitters is unknown. We propose boron dangling bonds as the likely source of the observed single-photon emission around 2 eV. An optical transition where an electron is excited from a doubly occupied boron dangling bond to a localized B pz state gives rise to a zero-phonon line of 2.06 eV and emission with a Huang-Rhys factor of 2.3. This transition is linearly polarized with the absorptive and emissive dipole aligned. Because of the energetic position of the states within the band gap, indirect excitation through the conduction band will occur for sufficiently large excitation energies, leading to the misalignment of the absorptive and emissive dipoles seen in experiment. Our calculations predict a singlet ground state and the existence of a metastable triplet state, in agreement with experiment.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.123.127401