Loading…
Sustainable and green microextraction of organophosphorus flame retardants by a novel phosphonium‐based deep eutectic solvent
Based on the solidification of a hydrophobic deep eutectic solvent in air‐assisted liquid phase microextraction combined with gas chromatography and mass spectrometry, a green and sustainable microextraction technique was developed for extracting, separating, and detecting organophosphorus flame ret...
Saved in:
Published in: | Journal of separation science 2020-01, Vol.43 (2), p.452-461 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Based on the solidification of a hydrophobic deep eutectic solvent in air‐assisted liquid phase microextraction combined with gas chromatography and mass spectrometry, a green and sustainable microextraction technique was developed for extracting, separating, and detecting organophosphorus flame retardants in aqueous samples. In this study, some strategies were considered for overcoming or improving the challenges of conventional solvent microextraction procedures. In addition, a hydrophobic deep eutectic solvent with a freezing point near the ambient temperature was employed as an extraction phase, the dispersive solvent was substituted by the syringe pump process, and the centrifugation step was omitted by using salting‐out phenomenon. Further, the effect of the main independent variables was evaluated by using the chemometric methods in order to maximize the extraction efficiency of the procedure. Under optimal conditions, the calibration model was linear in the range of 0.01–25.0 µg/L. Limits of detection and quantitation were assessed at the concentration levels of 2–23 and 9–65 ng/L, respectively. The precision involving repeatability and reproducibility was evaluated by estimating the relative standard deviation, the levels of which were |
---|---|
ISSN: | 1615-9306 1615-9314 |
DOI: | 10.1002/jssc.201900504 |