Loading…
Low-Energy-Consumption Three-Valued Memory Device Inspired by Solid-State Batteries
We report the creation of a low-energy-consumption three-valued memory device based on the switching of open-circuit voltages. This device consists of a stack of Li, Li3PO4 solid electrolyte, and Ni electrode films. We observed reversible voltage switching between high, intermediate, and low open-ci...
Saved in:
Published in: | ACS applied materials & interfaces 2019-12, Vol.11 (48), p.45150-45154 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the creation of a low-energy-consumption three-valued memory device based on the switching of open-circuit voltages. This device consists of a stack of Li, Li3PO4 solid electrolyte, and Ni electrode films. We observed reversible voltage switching between high, intermediate, and low open-circuit voltages. According to the scaling law, the energy required to switch a device is estimated to be 8.8 × 10–11 J/μm2 and this value is almost 1/50 of that of a typical dynamic random access memory. Both the high- and low-voltage states converged to the intermediate-voltage state, indicating that the intermediate-voltage state is the most stable metastable state. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b15366 |