Loading…

Structural Characterization of Open Reading Frame-Encoded Functional Genes from Tilapia Lake Virus (TiLV)

In recent years, large-scale mortalities are observed in tilapia due to infection with a novel orthomyxo-like virus named, tilapia lake virus (TiLV) which is marked to be a severe threat to universal tilapia industry. Currently, there are knowledge gaps relating to the antiviral peptide as well as t...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biotechnology 2019-12, Vol.61 (12), p.945-957
Main Authors: Acharya, Varsha, Chakraborty, Hirak Jyoti, Rout, Ajaya Kumar, Balabantaray, Sucharita, Behera, Bijay Kumar, Das, Basanta Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, large-scale mortalities are observed in tilapia due to infection with a novel orthomyxo-like virus named, tilapia lake virus (TiLV) which is marked to be a severe threat to universal tilapia industry. Currently, there are knowledge gaps relating to the antiviral peptide as well as there are no affordable vaccines or drugs available against TiLV yet. To understand the spreading of infection of TiLV in different organs of Oreochromis niloticus , RT-PCR analysis has been carried out. The gene segments of TiLV were retrieved from the NCBI database for computational biology analysis. The 14 functional genes were predicted from the 10 gene segments of TiLV. Phylogenetic analysis was employed to find out a better understanding for the evolution of tilapia lake virus genes. Out of 14 proteins, only six proteins show transmembrane helix region. Moreover, molecular modeling and molecular dynamics simulations of the predicted proteins revealed structural stability of the protein stabilized after 10-ns simulation. Overall, our study provided a basic bioinformatics on functional proteome of TiLV. Further, this study could be useful for development of novel peptide-based therapeutics to control TiLV infection.
ISSN:1073-6085
1559-0305
DOI:10.1007/s12033-019-00217-y