Loading…
50 bp deletion in promoter superoxide dismutase 1 gene and increasing risk of cardiovascular disease in Mashhad stroke and heart atherosclerotic disorder cohort study
Cardiovascular disease (CVD), one of the main mortality causes worldwide is considered to be affected by general oxidative stress and inadequacy antioxidant system. Superoxide dismutase 1 (SOD1), a cytosolic antioxidant enzyme has a key role in neutralizing the excessive prooxidant by scavenging the...
Saved in:
Published in: | BioFactors (Oxford) 2020-01, Vol.46 (1), p.55-63 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cardiovascular disease (CVD), one of the main mortality causes worldwide is considered to be affected by general oxidative stress and inadequacy antioxidant system. Superoxide dismutase 1 (SOD1), a cytosolic antioxidant enzyme has a key role in neutralizing the excessive prooxidant by scavenging the super oxide anions. SOD1 polymorphic variants exhibit the altered activity properties. In the current study, we are aimed to investigate the association between the SOD1 polymorphism and CVD prevalence. A 6‐years case control follow up study was designed to genotype the 526 participants (311 controls and 215 cases) for studying the 50 bp INS/DEL polymorphism at SOD1 promoter gene and analyze their blood lipid profile and anthropometric characteristics. Among the two possible alleles of the SOD1 gene (Wild [W] and Mutant [M]) the meaningful association was detected between the Mutants’ frequency and the prevalence of CVD patients (p‐value |
---|---|
ISSN: | 0951-6433 1872-8081 |
DOI: | 10.1002/biof.1575 |