Loading…

Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities

This study evaluated maltodextrin (MD) and gelatin (GEL) in different ratios (SO1, MD only; SO2, MD and GEL = 2:1; and SO3, MD and GEL = 1:1, respectively) as wall materials to microencapsulation of sweet orange essential oil (SOEO, 10% w/w). SOEO microspheres were obtained by emulsification/lyophil...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2020-01, Vol.143, p.991-999
Main Authors: de Araújo, Jayuri Susy Fernandes, de Souza, Evandro Leite, Oliveira, Jéssica Ribeiro, Gomes, Ana Cristina Alves, Kotzebue, Lloyd Ryan Viana, da Silva Agostini, Deuber Lincon, de Oliveira, Diego Lomonaco Vasconcelos, Mazzetto, Selma Elaine, da Silva, André Leandro, Cavalcanti, Mônica Tejo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study evaluated maltodextrin (MD) and gelatin (GEL) in different ratios (SO1, MD only; SO2, MD and GEL = 2:1; and SO3, MD and GEL = 1:1, respectively) as wall materials to microencapsulation of sweet orange essential oil (SOEO, 10% w/w). SOEO microspheres were obtained by emulsification/lyophilization and characterized regarding the microencapsulation yield and efficiency, infrared spectroscopy, ultrastructural aspects (scanning electron microscopy, SEM), thermogravimetric (TG), derivative thermogravimetry (DTG) and differential exploratory calorimetry (DSC) and bioactive properties. Yield and SOEO microencapsulation efficiency (MEE) was of up to 90.19 and 75.75%, respectively. SEM analysis showed SO1, SO2 and SO3 microspheres with irregular shapes. Although improvements in thermal stability of all formulated microspheres were observed, TG and DTG curves indicated slower rates of volatilization and degradation of SOEO in SO1. DSC curves indicated that SO1, SO2 and SO3 microsphere formulations were effective in protecting SOEO, especially in relation to improvements in oxidative stability. Antibacterial and antioxidant properties, as well as total phenolic content of SOEO, were maintained in all formulated microspheres. SOEO microspheres can be prepared using MD and GEL and lyophilization, resulting in high yields, MEE, stability and preservation of antioxidant and antimicrobial properties.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2019.09.160