Loading…
Amplified noise nonstationarity in a mode-locked laser based on nonlinear polarization rotation
Beat note measurements between a mode-locked (ML) and a continuous-wave laser, as well as between two ML sources, were used to demonstrate that the sub-threshold, cavity filtered, amplified spontaneous emission is not stationary, even when a fast mode-locking mechanism, such as nonlinear polarizatio...
Saved in:
Published in: | Optics letters 2019-11, Vol.44 (21), p.5137-5140 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Beat note measurements between a mode-locked (ML) and a continuous-wave laser, as well as between two ML sources, were used to demonstrate that the sub-threshold, cavity filtered, amplified spontaneous emission is not stationary, even when a fast mode-locking mechanism, such as nonlinear polarization rotation, is used to generate short pulses. A relatively small gain modulation of a few percent created by high-intensity pulses can produce a significant modulation of the amplified noise once synchronously accumulated over several cavity round-trips, even if the repetition rate is faster than the gain dynamics. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.44.005137 |