Loading…

Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats

Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this...

Full description

Saved in:
Bibliographic Details
Published in:Clinical and experimental pharmacology & physiology 2020-03, Vol.47 (3), p.422-431
Main Authors: Rodriguez, Ruben, Escobedo, Benny, Lee, Andrew Y., Thorwald, Max, Godoy‐Lugo, Jose A., Nakano, Daisuke, Nishiyama, Akira, Parkes, David G., Ortiz, Rudy M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663
cites cdi_FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663
container_end_page 431
container_issue 3
container_start_page 422
container_title Clinical and experimental pharmacology & physiology
container_volume 47
creator Rodriguez, Ruben
Escobedo, Benny
Lee, Andrew Y.
Thorwald, Max
Godoy‐Lugo, Jose A.
Nakano, Daisuke
Nishiyama, Akira
Parkes, David G.
Ortiz, Rudy M.
description Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP‐1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin‐resistant Otsuka Long‐Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP‐1r additively decrease oxidative damage and urinary albumin excretion (UalbV) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP‐1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4‐hydroxy‐2‐nonenal levels by 21%, 27% and 27%, respectively. At baseline, UalbV was nearly double in OLETF compared with LETO and increased to nearly 10‐fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced UalbV, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP‐1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet‐induced obesity.
doi_str_mv 10.1111/1440-1681.13206
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2311655183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311655183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPLursqEhs2aa_HP5Msq1H5kSqBBF1btnMzcuvEUztu1R2PwI7340lwSCkSG7yxr_2dc698CDmmcErLOqOcQ01lQ08pW4N8RlZPN8_JChiImjYbOCCvUroGAAGSvSQHjMqN4IytyI8vbsh-0iOGnCo97lyYcExurCJa3E8hVsYHe6M7LK9dtfPZ6l0Yf3777t0NVvvCuA5LSf8qtJ3cnZ5cGCs9oHch6qnIvcmDG3N0uir-wWDCckjZu9kuYnKpDDJVhU5H5EWvfcLXj_shuXp38XX7ob789P7j9vyytnzTyNoIDa1s2Vp2oreSMeBaNKbt7aZft6ZHbGzTg2FWg-ZaC9vaueBGAmdSskPydvHdx3CbMU1qcMmi98uPqDWjVApBG1bQN_-g1yHHsUxXKAG09Oa8UGcLZWNIKWKv9tENOj4oCmrOTM0JqTkh9Tuzojh59M1mwO6J_xNSAcQC3DuPD__zU9uLz4vxL2ckp0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350130444</pqid></control><display><type>article</type><title>Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Rodriguez, Ruben ; Escobedo, Benny ; Lee, Andrew Y. ; Thorwald, Max ; Godoy‐Lugo, Jose A. ; Nakano, Daisuke ; Nishiyama, Akira ; Parkes, David G. ; Ortiz, Rudy M.</creator><creatorcontrib>Rodriguez, Ruben ; Escobedo, Benny ; Lee, Andrew Y. ; Thorwald, Max ; Godoy‐Lugo, Jose A. ; Nakano, Daisuke ; Nishiyama, Akira ; Parkes, David G. ; Ortiz, Rudy M.</creatorcontrib><description>Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP‐1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin‐resistant Otsuka Long‐Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP‐1r additively decrease oxidative damage and urinary albumin excretion (UalbV) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP‐1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4‐hydroxy‐2‐nonenal levels by 21%, 27% and 27%, respectively. At baseline, UalbV was nearly double in OLETF compared with LETO and increased to nearly 10‐fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced UalbV, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP‐1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet‐induced obesity.</description><identifier>ISSN: 0305-1870</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/1440-1681.13206</identifier><identifier>PMID: 31675433</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Activation ; Albumins ; Albuminuria - drug therapy ; Albuminuria - metabolism ; Angiotensin AT1 receptors ; Angiotensin II Type 1 Receptor Blockers - administration &amp; dosage ; Animals ; Anti-Obesity Agents - administration &amp; dosage ; chronic kidney disease ; Damage ; diabetes ; Exenatide - administration &amp; dosage ; Glucagon ; Glucagon-Like Peptide-1 Receptor - agonists ; Glucagon-Like Peptide-1 Receptor - metabolism ; Insulin ; Insulin resistance ; Insulin Resistance - physiology ; Kidneys ; Male ; NAD(P)H oxidase ; Nitrotyrosine ; NOX4 protein ; Obesity ; Obesity - drug therapy ; Obesity - metabolism ; Oxidants ; Oxidation resistance ; oxidative stress ; Oxidizing agents ; Peptides ; Protein expression ; Proteins ; Rats ; Rats, Inbred OLETF ; Rats, Long-Evans ; Receptor mechanisms ; Renin ; renin‐angiotensin system ; Signal transduction ; Signaling</subject><ispartof>Clinical and experimental pharmacology &amp; physiology, 2020-03, Vol.47 (3), p.422-431</ispartof><rights>2019 John Wiley &amp; Sons Australia, Ltd</rights><rights>2019 John Wiley &amp; Sons Australia, Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663</citedby><cites>FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663</cites><orcidid>0000-0003-3715-7194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31675433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodriguez, Ruben</creatorcontrib><creatorcontrib>Escobedo, Benny</creatorcontrib><creatorcontrib>Lee, Andrew Y.</creatorcontrib><creatorcontrib>Thorwald, Max</creatorcontrib><creatorcontrib>Godoy‐Lugo, Jose A.</creatorcontrib><creatorcontrib>Nakano, Daisuke</creatorcontrib><creatorcontrib>Nishiyama, Akira</creatorcontrib><creatorcontrib>Parkes, David G.</creatorcontrib><creatorcontrib>Ortiz, Rudy M.</creatorcontrib><title>Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats</title><title>Clinical and experimental pharmacology &amp; physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP‐1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin‐resistant Otsuka Long‐Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP‐1r additively decrease oxidative damage and urinary albumin excretion (UalbV) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP‐1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4‐hydroxy‐2‐nonenal levels by 21%, 27% and 27%, respectively. At baseline, UalbV was nearly double in OLETF compared with LETO and increased to nearly 10‐fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced UalbV, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP‐1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet‐induced obesity.</description><subject>Activation</subject><subject>Albumins</subject><subject>Albuminuria - drug therapy</subject><subject>Albuminuria - metabolism</subject><subject>Angiotensin AT1 receptors</subject><subject>Angiotensin II Type 1 Receptor Blockers - administration &amp; dosage</subject><subject>Animals</subject><subject>Anti-Obesity Agents - administration &amp; dosage</subject><subject>chronic kidney disease</subject><subject>Damage</subject><subject>diabetes</subject><subject>Exenatide - administration &amp; dosage</subject><subject>Glucagon</subject><subject>Glucagon-Like Peptide-1 Receptor - agonists</subject><subject>Glucagon-Like Peptide-1 Receptor - metabolism</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - physiology</subject><subject>Kidneys</subject><subject>Male</subject><subject>NAD(P)H oxidase</subject><subject>Nitrotyrosine</subject><subject>NOX4 protein</subject><subject>Obesity</subject><subject>Obesity - drug therapy</subject><subject>Obesity - metabolism</subject><subject>Oxidants</subject><subject>Oxidation resistance</subject><subject>oxidative stress</subject><subject>Oxidizing agents</subject><subject>Peptides</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Inbred OLETF</subject><subject>Rats, Long-Evans</subject><subject>Receptor mechanisms</subject><subject>Renin</subject><subject>renin‐angiotensin system</subject><subject>Signal transduction</subject><subject>Signaling</subject><issn>0305-1870</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EokPLursqEhs2aa_HP5Msq1H5kSqBBF1btnMzcuvEUztu1R2PwI7340lwSCkSG7yxr_2dc698CDmmcErLOqOcQ01lQ08pW4N8RlZPN8_JChiImjYbOCCvUroGAAGSvSQHjMqN4IytyI8vbsh-0iOGnCo97lyYcExurCJa3E8hVsYHe6M7LK9dtfPZ6l0Yf3777t0NVvvCuA5LSf8qtJ3cnZ5cGCs9oHch6qnIvcmDG3N0uir-wWDCckjZu9kuYnKpDDJVhU5H5EWvfcLXj_shuXp38XX7ob789P7j9vyytnzTyNoIDa1s2Vp2oreSMeBaNKbt7aZft6ZHbGzTg2FWg-ZaC9vaueBGAmdSskPydvHdx3CbMU1qcMmi98uPqDWjVApBG1bQN_-g1yHHsUxXKAG09Oa8UGcLZWNIKWKv9tENOj4oCmrOTM0JqTkh9Tuzojh59M1mwO6J_xNSAcQC3DuPD__zU9uLz4vxL2ckp0M</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Rodriguez, Ruben</creator><creator>Escobedo, Benny</creator><creator>Lee, Andrew Y.</creator><creator>Thorwald, Max</creator><creator>Godoy‐Lugo, Jose A.</creator><creator>Nakano, Daisuke</creator><creator>Nishiyama, Akira</creator><creator>Parkes, David G.</creator><creator>Ortiz, Rudy M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3715-7194</orcidid></search><sort><creationdate>202003</creationdate><title>Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats</title><author>Rodriguez, Ruben ; Escobedo, Benny ; Lee, Andrew Y. ; Thorwald, Max ; Godoy‐Lugo, Jose A. ; Nakano, Daisuke ; Nishiyama, Akira ; Parkes, David G. ; Ortiz, Rudy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Albumins</topic><topic>Albuminuria - drug therapy</topic><topic>Albuminuria - metabolism</topic><topic>Angiotensin AT1 receptors</topic><topic>Angiotensin II Type 1 Receptor Blockers - administration &amp; dosage</topic><topic>Animals</topic><topic>Anti-Obesity Agents - administration &amp; dosage</topic><topic>chronic kidney disease</topic><topic>Damage</topic><topic>diabetes</topic><topic>Exenatide - administration &amp; dosage</topic><topic>Glucagon</topic><topic>Glucagon-Like Peptide-1 Receptor - agonists</topic><topic>Glucagon-Like Peptide-1 Receptor - metabolism</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - physiology</topic><topic>Kidneys</topic><topic>Male</topic><topic>NAD(P)H oxidase</topic><topic>Nitrotyrosine</topic><topic>NOX4 protein</topic><topic>Obesity</topic><topic>Obesity - drug therapy</topic><topic>Obesity - metabolism</topic><topic>Oxidants</topic><topic>Oxidation resistance</topic><topic>oxidative stress</topic><topic>Oxidizing agents</topic><topic>Peptides</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Inbred OLETF</topic><topic>Rats, Long-Evans</topic><topic>Receptor mechanisms</topic><topic>Renin</topic><topic>renin‐angiotensin system</topic><topic>Signal transduction</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Ruben</creatorcontrib><creatorcontrib>Escobedo, Benny</creatorcontrib><creatorcontrib>Lee, Andrew Y.</creatorcontrib><creatorcontrib>Thorwald, Max</creatorcontrib><creatorcontrib>Godoy‐Lugo, Jose A.</creatorcontrib><creatorcontrib>Nakano, Daisuke</creatorcontrib><creatorcontrib>Nishiyama, Akira</creatorcontrib><creatorcontrib>Parkes, David G.</creatorcontrib><creatorcontrib>Ortiz, Rudy M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Ruben</au><au>Escobedo, Benny</au><au>Lee, Andrew Y.</au><au>Thorwald, Max</au><au>Godoy‐Lugo, Jose A.</au><au>Nakano, Daisuke</au><au>Nishiyama, Akira</au><au>Parkes, David G.</au><au>Ortiz, Rudy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats</atitle><jtitle>Clinical and experimental pharmacology &amp; physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2020-03</date><risdate>2020</risdate><volume>47</volume><issue>3</issue><spage>422</spage><epage>431</epage><pages>422-431</pages><issn>0305-1870</issn><eissn>1440-1681</eissn><abstract>Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP‐1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin‐resistant Otsuka Long‐Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP‐1r additively decrease oxidative damage and urinary albumin excretion (UalbV) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP‐1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4‐hydroxy‐2‐nonenal levels by 21%, 27% and 27%, respectively. At baseline, UalbV was nearly double in OLETF compared with LETO and increased to nearly 10‐fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced UalbV, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP‐1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet‐induced obesity.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31675433</pmid><doi>10.1111/1440-1681.13206</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3715-7194</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1870
ispartof Clinical and experimental pharmacology & physiology, 2020-03, Vol.47 (3), p.422-431
issn 0305-1870
1440-1681
language eng
recordid cdi_proquest_miscellaneous_2311655183
source EBSCOhost SPORTDiscus with Full Text; Wiley-Blackwell Read & Publish Collection
subjects Activation
Albumins
Albuminuria - drug therapy
Albuminuria - metabolism
Angiotensin AT1 receptors
Angiotensin II Type 1 Receptor Blockers - administration & dosage
Animals
Anti-Obesity Agents - administration & dosage
chronic kidney disease
Damage
diabetes
Exenatide - administration & dosage
Glucagon
Glucagon-Like Peptide-1 Receptor - agonists
Glucagon-Like Peptide-1 Receptor - metabolism
Insulin
Insulin resistance
Insulin Resistance - physiology
Kidneys
Male
NAD(P)H oxidase
Nitrotyrosine
NOX4 protein
Obesity
Obesity - drug therapy
Obesity - metabolism
Oxidants
Oxidation resistance
oxidative stress
Oxidizing agents
Peptides
Protein expression
Proteins
Rats
Rats, Inbred OLETF
Rats, Long-Evans
Receptor mechanisms
Renin
renin‐angiotensin system
Signal transduction
Signaling
title Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20angiotensin%20receptor%20blockade%20and%20glucagon%E2%80%90like%20peptide%E2%80%901%20receptor%20activation%20ameliorate%20albuminuria%20in%20obese%20insulin%E2%80%90resistant%20rats&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Rodriguez,%20Ruben&rft.date=2020-03&rft.volume=47&rft.issue=3&rft.spage=422&rft.epage=431&rft.pages=422-431&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/1440-1681.13206&rft_dat=%3Cproquest_cross%3E2311655183%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350130444&rft_id=info:pmid/31675433&rfr_iscdi=true