Loading…
Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats
Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this...
Saved in:
Published in: | Clinical and experimental pharmacology & physiology 2020-03, Vol.47 (3), p.422-431 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663 |
---|---|
cites | cdi_FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663 |
container_end_page | 431 |
container_issue | 3 |
container_start_page | 422 |
container_title | Clinical and experimental pharmacology & physiology |
container_volume | 47 |
creator | Rodriguez, Ruben Escobedo, Benny Lee, Andrew Y. Thorwald, Max Godoy‐Lugo, Jose A. Nakano, Daisuke Nishiyama, Akira Parkes, David G. Ortiz, Rudy M. |
description | Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP‐1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin‐resistant Otsuka Long‐Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP‐1r additively decrease oxidative damage and urinary albumin excretion (UalbV) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP‐1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4‐hydroxy‐2‐nonenal levels by 21%, 27% and 27%, respectively. At baseline, UalbV was nearly double in OLETF compared with LETO and increased to nearly 10‐fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced UalbV, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP‐1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet‐induced obesity. |
doi_str_mv | 10.1111/1440-1681.13206 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2311655183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311655183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPLursqEhs2aa_HP5Msq1H5kSqBBF1btnMzcuvEUztu1R2PwI7340lwSCkSG7yxr_2dc698CDmmcErLOqOcQ01lQ08pW4N8RlZPN8_JChiImjYbOCCvUroGAAGSvSQHjMqN4IytyI8vbsh-0iOGnCo97lyYcExurCJa3E8hVsYHe6M7LK9dtfPZ6l0Yf3777t0NVvvCuA5LSf8qtJ3cnZ5cGCs9oHch6qnIvcmDG3N0uir-wWDCckjZu9kuYnKpDDJVhU5H5EWvfcLXj_shuXp38XX7ob789P7j9vyytnzTyNoIDa1s2Vp2oreSMeBaNKbt7aZft6ZHbGzTg2FWg-ZaC9vaueBGAmdSskPydvHdx3CbMU1qcMmi98uPqDWjVApBG1bQN_-g1yHHsUxXKAG09Oa8UGcLZWNIKWKv9tENOj4oCmrOTM0JqTkh9Tuzojh59M1mwO6J_xNSAcQC3DuPD__zU9uLz4vxL2ckp0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350130444</pqid></control><display><type>article</type><title>Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Rodriguez, Ruben ; Escobedo, Benny ; Lee, Andrew Y. ; Thorwald, Max ; Godoy‐Lugo, Jose A. ; Nakano, Daisuke ; Nishiyama, Akira ; Parkes, David G. ; Ortiz, Rudy M.</creator><creatorcontrib>Rodriguez, Ruben ; Escobedo, Benny ; Lee, Andrew Y. ; Thorwald, Max ; Godoy‐Lugo, Jose A. ; Nakano, Daisuke ; Nishiyama, Akira ; Parkes, David G. ; Ortiz, Rudy M.</creatorcontrib><description>Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP‐1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin‐resistant Otsuka Long‐Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP‐1r additively decrease oxidative damage and urinary albumin excretion (UalbV) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP‐1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4‐hydroxy‐2‐nonenal levels by 21%, 27% and 27%, respectively. At baseline, UalbV was nearly double in OLETF compared with LETO and increased to nearly 10‐fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced UalbV, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP‐1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet‐induced obesity.</description><identifier>ISSN: 0305-1870</identifier><identifier>EISSN: 1440-1681</identifier><identifier>DOI: 10.1111/1440-1681.13206</identifier><identifier>PMID: 31675433</identifier><language>eng</language><publisher>Australia: Wiley Subscription Services, Inc</publisher><subject>Activation ; Albumins ; Albuminuria - drug therapy ; Albuminuria - metabolism ; Angiotensin AT1 receptors ; Angiotensin II Type 1 Receptor Blockers - administration & dosage ; Animals ; Anti-Obesity Agents - administration & dosage ; chronic kidney disease ; Damage ; diabetes ; Exenatide - administration & dosage ; Glucagon ; Glucagon-Like Peptide-1 Receptor - agonists ; Glucagon-Like Peptide-1 Receptor - metabolism ; Insulin ; Insulin resistance ; Insulin Resistance - physiology ; Kidneys ; Male ; NAD(P)H oxidase ; Nitrotyrosine ; NOX4 protein ; Obesity ; Obesity - drug therapy ; Obesity - metabolism ; Oxidants ; Oxidation resistance ; oxidative stress ; Oxidizing agents ; Peptides ; Protein expression ; Proteins ; Rats ; Rats, Inbred OLETF ; Rats, Long-Evans ; Receptor mechanisms ; Renin ; renin‐angiotensin system ; Signal transduction ; Signaling</subject><ispartof>Clinical and experimental pharmacology & physiology, 2020-03, Vol.47 (3), p.422-431</ispartof><rights>2019 John Wiley & Sons Australia, Ltd</rights><rights>2019 John Wiley & Sons Australia, Ltd.</rights><rights>Copyright © 2020 John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663</citedby><cites>FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663</cites><orcidid>0000-0003-3715-7194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31675433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodriguez, Ruben</creatorcontrib><creatorcontrib>Escobedo, Benny</creatorcontrib><creatorcontrib>Lee, Andrew Y.</creatorcontrib><creatorcontrib>Thorwald, Max</creatorcontrib><creatorcontrib>Godoy‐Lugo, Jose A.</creatorcontrib><creatorcontrib>Nakano, Daisuke</creatorcontrib><creatorcontrib>Nishiyama, Akira</creatorcontrib><creatorcontrib>Parkes, David G.</creatorcontrib><creatorcontrib>Ortiz, Rudy M.</creatorcontrib><title>Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats</title><title>Clinical and experimental pharmacology & physiology</title><addtitle>Clin Exp Pharmacol Physiol</addtitle><description>Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP‐1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin‐resistant Otsuka Long‐Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP‐1r additively decrease oxidative damage and urinary albumin excretion (UalbV) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP‐1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4‐hydroxy‐2‐nonenal levels by 21%, 27% and 27%, respectively. At baseline, UalbV was nearly double in OLETF compared with LETO and increased to nearly 10‐fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced UalbV, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP‐1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet‐induced obesity.</description><subject>Activation</subject><subject>Albumins</subject><subject>Albuminuria - drug therapy</subject><subject>Albuminuria - metabolism</subject><subject>Angiotensin AT1 receptors</subject><subject>Angiotensin II Type 1 Receptor Blockers - administration & dosage</subject><subject>Animals</subject><subject>Anti-Obesity Agents - administration & dosage</subject><subject>chronic kidney disease</subject><subject>Damage</subject><subject>diabetes</subject><subject>Exenatide - administration & dosage</subject><subject>Glucagon</subject><subject>Glucagon-Like Peptide-1 Receptor - agonists</subject><subject>Glucagon-Like Peptide-1 Receptor - metabolism</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - physiology</subject><subject>Kidneys</subject><subject>Male</subject><subject>NAD(P)H oxidase</subject><subject>Nitrotyrosine</subject><subject>NOX4 protein</subject><subject>Obesity</subject><subject>Obesity - drug therapy</subject><subject>Obesity - metabolism</subject><subject>Oxidants</subject><subject>Oxidation resistance</subject><subject>oxidative stress</subject><subject>Oxidizing agents</subject><subject>Peptides</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Inbred OLETF</subject><subject>Rats, Long-Evans</subject><subject>Receptor mechanisms</subject><subject>Renin</subject><subject>renin‐angiotensin system</subject><subject>Signal transduction</subject><subject>Signaling</subject><issn>0305-1870</issn><issn>1440-1681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EokPLursqEhs2aa_HP5Msq1H5kSqBBF1btnMzcuvEUztu1R2PwI7340lwSCkSG7yxr_2dc698CDmmcErLOqOcQ01lQ08pW4N8RlZPN8_JChiImjYbOCCvUroGAAGSvSQHjMqN4IytyI8vbsh-0iOGnCo97lyYcExurCJa3E8hVsYHe6M7LK9dtfPZ6l0Yf3777t0NVvvCuA5LSf8qtJ3cnZ5cGCs9oHch6qnIvcmDG3N0uir-wWDCckjZu9kuYnKpDDJVhU5H5EWvfcLXj_shuXp38XX7ob789P7j9vyytnzTyNoIDa1s2Vp2oreSMeBaNKbt7aZft6ZHbGzTg2FWg-ZaC9vaueBGAmdSskPydvHdx3CbMU1qcMmi98uPqDWjVApBG1bQN_-g1yHHsUxXKAG09Oa8UGcLZWNIKWKv9tENOj4oCmrOTM0JqTkh9Tuzojh59M1mwO6J_xNSAcQC3DuPD__zU9uLz4vxL2ckp0M</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Rodriguez, Ruben</creator><creator>Escobedo, Benny</creator><creator>Lee, Andrew Y.</creator><creator>Thorwald, Max</creator><creator>Godoy‐Lugo, Jose A.</creator><creator>Nakano, Daisuke</creator><creator>Nishiyama, Akira</creator><creator>Parkes, David G.</creator><creator>Ortiz, Rudy M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3715-7194</orcidid></search><sort><creationdate>202003</creationdate><title>Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats</title><author>Rodriguez, Ruben ; Escobedo, Benny ; Lee, Andrew Y. ; Thorwald, Max ; Godoy‐Lugo, Jose A. ; Nakano, Daisuke ; Nishiyama, Akira ; Parkes, David G. ; Ortiz, Rudy M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Albumins</topic><topic>Albuminuria - drug therapy</topic><topic>Albuminuria - metabolism</topic><topic>Angiotensin AT1 receptors</topic><topic>Angiotensin II Type 1 Receptor Blockers - administration & dosage</topic><topic>Animals</topic><topic>Anti-Obesity Agents - administration & dosage</topic><topic>chronic kidney disease</topic><topic>Damage</topic><topic>diabetes</topic><topic>Exenatide - administration & dosage</topic><topic>Glucagon</topic><topic>Glucagon-Like Peptide-1 Receptor - agonists</topic><topic>Glucagon-Like Peptide-1 Receptor - metabolism</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - physiology</topic><topic>Kidneys</topic><topic>Male</topic><topic>NAD(P)H oxidase</topic><topic>Nitrotyrosine</topic><topic>NOX4 protein</topic><topic>Obesity</topic><topic>Obesity - drug therapy</topic><topic>Obesity - metabolism</topic><topic>Oxidants</topic><topic>Oxidation resistance</topic><topic>oxidative stress</topic><topic>Oxidizing agents</topic><topic>Peptides</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Inbred OLETF</topic><topic>Rats, Long-Evans</topic><topic>Receptor mechanisms</topic><topic>Renin</topic><topic>renin‐angiotensin system</topic><topic>Signal transduction</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriguez, Ruben</creatorcontrib><creatorcontrib>Escobedo, Benny</creatorcontrib><creatorcontrib>Lee, Andrew Y.</creatorcontrib><creatorcontrib>Thorwald, Max</creatorcontrib><creatorcontrib>Godoy‐Lugo, Jose A.</creatorcontrib><creatorcontrib>Nakano, Daisuke</creatorcontrib><creatorcontrib>Nishiyama, Akira</creatorcontrib><creatorcontrib>Parkes, David G.</creatorcontrib><creatorcontrib>Ortiz, Rudy M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical and experimental pharmacology & physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriguez, Ruben</au><au>Escobedo, Benny</au><au>Lee, Andrew Y.</au><au>Thorwald, Max</au><au>Godoy‐Lugo, Jose A.</au><au>Nakano, Daisuke</au><au>Nishiyama, Akira</au><au>Parkes, David G.</au><au>Ortiz, Rudy M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats</atitle><jtitle>Clinical and experimental pharmacology & physiology</jtitle><addtitle>Clin Exp Pharmacol Physiol</addtitle><date>2020-03</date><risdate>2020</risdate><volume>47</volume><issue>3</issue><spage>422</spage><epage>431</epage><pages>422-431</pages><issn>0305-1870</issn><eissn>1440-1681</eissn><abstract>Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin‐angiotensin system (RAS) and activation of glucagon‐like peptide‐1 (GLP‐1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP‐1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin‐resistant Otsuka Long‐Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP‐1r additively decrease oxidative damage and urinary albumin excretion (UalbV) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP‐1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4‐hydroxy‐2‐nonenal levels by 21%, 27% and 27%, respectively. At baseline, UalbV was nearly double in OLETF compared with LETO and increased to nearly 10‐fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced UalbV, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP‐1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet‐induced obesity.</abstract><cop>Australia</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31675433</pmid><doi>10.1111/1440-1681.13206</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3715-7194</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1870 |
ispartof | Clinical and experimental pharmacology & physiology, 2020-03, Vol.47 (3), p.422-431 |
issn | 0305-1870 1440-1681 |
language | eng |
recordid | cdi_proquest_miscellaneous_2311655183 |
source | EBSCOhost SPORTDiscus with Full Text; Wiley-Blackwell Read & Publish Collection |
subjects | Activation Albumins Albuminuria - drug therapy Albuminuria - metabolism Angiotensin AT1 receptors Angiotensin II Type 1 Receptor Blockers - administration & dosage Animals Anti-Obesity Agents - administration & dosage chronic kidney disease Damage diabetes Exenatide - administration & dosage Glucagon Glucagon-Like Peptide-1 Receptor - agonists Glucagon-Like Peptide-1 Receptor - metabolism Insulin Insulin resistance Insulin Resistance - physiology Kidneys Male NAD(P)H oxidase Nitrotyrosine NOX4 protein Obesity Obesity - drug therapy Obesity - metabolism Oxidants Oxidation resistance oxidative stress Oxidizing agents Peptides Protein expression Proteins Rats Rats, Inbred OLETF Rats, Long-Evans Receptor mechanisms Renin renin‐angiotensin system Signal transduction Signaling |
title | Simultaneous angiotensin receptor blockade and glucagon‐like peptide‐1 receptor activation ameliorate albuminuria in obese insulin‐resistant rats |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20angiotensin%20receptor%20blockade%20and%20glucagon%E2%80%90like%20peptide%E2%80%901%20receptor%20activation%20ameliorate%20albuminuria%20in%20obese%20insulin%E2%80%90resistant%20rats&rft.jtitle=Clinical%20and%20experimental%20pharmacology%20&%20physiology&rft.au=Rodriguez,%20Ruben&rft.date=2020-03&rft.volume=47&rft.issue=3&rft.spage=422&rft.epage=431&rft.pages=422-431&rft.issn=0305-1870&rft.eissn=1440-1681&rft_id=info:doi/10.1111/1440-1681.13206&rft_dat=%3Cproquest_cross%3E2311655183%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4786-b5a0969326d5fc63304a58b9fc7f29bfee8c8f0b3ca0a4aa5c9cb3ca4b6043663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350130444&rft_id=info:pmid/31675433&rfr_iscdi=true |