Loading…

Accurate computations for steep solitary waves

Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. A numerical scheme based on series truncation is presented to calculate the highest solitary wave. It is found that the ratio of the amplitude of the wave versus the depth is 0.83322. This value is compared with the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 1983-11, Vol.136 (1), p.63-71
Main Authors: Hunter, J. K., Vanden-Broeck, J.-M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43
cites cdi_FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43
container_end_page 71
container_issue 1
container_start_page 63
container_title Journal of fluid mechanics
container_volume 136
creator Hunter, J. K.
Vanden-Broeck, J.-M.
description Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. A numerical scheme based on series truncation is presented to calculate the highest solitary wave. It is found that the ratio of the amplitude of the wave versus the depth is 0.83322. This value is compared with the values obtained by previous investigators. In addition, another numerical scheme based on an integral-equation formulation is derived to compute solitary waves of arbitrary amplitude. These calculations confirm and extend the calculations of Byatt-Smith & Longuet-Higgins (1976) for very steep waves.
doi_str_mv 10.1017/S0022112083002050
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23125153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112083002050</cupid><sourcerecordid>13790405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFZ_gLssxF3qvKdZlmqrUBCxorthZjIjqUkmziQ-_r0JLd0IuroXzrmHcz8AzhGcIIjE1SOEGCOE4ZT0G2TwAIwQ5VkqOGWHYDTI6aAfg5MYNxAiAjMxApOZMV1QrU2Mr5quVW3h65g4H5LYWtsk0ZdFq8J38qk-bDwFR06V0Z7t5hg8LW7W89t0db-8m89WqaGctinOsCCKaQYJdzkSzGnIOLNOU8YUdoYKzanIc5FrLZDLNM2oyRFTzhGlKBmDy21uE_x7Z2MrqyIaW5aqtr6LEhOEGWLkXyMiIoMUst6ItkYTfIzBOtmEouofkwjKAaH8hbC_udiFq2hU6YKqTRH3hxlFXLAhOt3aih7Z115W4U1yQQSTfPkgFy9k_Xw9XfeNxoDsqqhKhyJ_tXLju1D3QP8o8wNatI2u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13790405</pqid></control><display><type>article</type><title>Accurate computations for steep solitary waves</title><source>Cambridge University Press:JISC Collections:Full Collection Digital Archives (STM and HSS) (218 titles)</source><creator>Hunter, J. K. ; Vanden-Broeck, J.-M.</creator><creatorcontrib>Hunter, J. K. ; Vanden-Broeck, J.-M.</creatorcontrib><description>Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. A numerical scheme based on series truncation is presented to calculate the highest solitary wave. It is found that the ratio of the amplitude of the wave versus the depth is 0.83322. This value is compared with the values obtained by previous investigators. In addition, another numerical scheme based on an integral-equation formulation is derived to compute solitary waves of arbitrary amplitude. These calculations confirm and extend the calculations of Byatt-Smith &amp; Longuet-Higgins (1976) for very steep waves.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112083002050</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic waves ; Physics</subject><ispartof>Journal of fluid mechanics, 1983-11, Vol.136 (1), p.63-71</ispartof><rights>1983 Cambridge University Press</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43</citedby><cites>FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112083002050/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,55689</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9416755$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunter, J. K.</creatorcontrib><creatorcontrib>Vanden-Broeck, J.-M.</creatorcontrib><title>Accurate computations for steep solitary waves</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. A numerical scheme based on series truncation is presented to calculate the highest solitary wave. It is found that the ratio of the amplitude of the wave versus the depth is 0.83322. This value is compared with the values obtained by previous investigators. In addition, another numerical scheme based on an integral-equation formulation is derived to compute solitary waves of arbitrary amplitude. These calculations confirm and extend the calculations of Byatt-Smith &amp; Longuet-Higgins (1976) for very steep waves.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic waves</subject><subject>Physics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFZ_gLssxF3qvKdZlmqrUBCxorthZjIjqUkmziQ-_r0JLd0IuroXzrmHcz8AzhGcIIjE1SOEGCOE4ZT0G2TwAIwQ5VkqOGWHYDTI6aAfg5MYNxAiAjMxApOZMV1QrU2Mr5quVW3h65g4H5LYWtsk0ZdFq8J38qk-bDwFR06V0Z7t5hg8LW7W89t0db-8m89WqaGctinOsCCKaQYJdzkSzGnIOLNOU8YUdoYKzanIc5FrLZDLNM2oyRFTzhGlKBmDy21uE_x7Z2MrqyIaW5aqtr6LEhOEGWLkXyMiIoMUst6ItkYTfIzBOtmEouofkwjKAaH8hbC_udiFq2hU6YKqTRH3hxlFXLAhOt3aih7Z115W4U1yQQSTfPkgFy9k_Xw9XfeNxoDsqqhKhyJ_tXLju1D3QP8o8wNatI2u</recordid><startdate>19831101</startdate><enddate>19831101</enddate><creator>Hunter, J. K.</creator><creator>Vanden-Broeck, J.-M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19831101</creationdate><title>Accurate computations for steep solitary waves</title><author>Hunter, J. K. ; Vanden-Broeck, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic waves</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, J. K.</creatorcontrib><creatorcontrib>Vanden-Broeck, J.-M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, J. K.</au><au>Vanden-Broeck, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate computations for steep solitary waves</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1983-11-01</date><risdate>1983</risdate><volume>136</volume><issue>1</issue><spage>63</spage><epage>71</epage><pages>63-71</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. A numerical scheme based on series truncation is presented to calculate the highest solitary wave. It is found that the ratio of the amplitude of the wave versus the depth is 0.83322. This value is compared with the values obtained by previous investigators. In addition, another numerical scheme based on an integral-equation formulation is derived to compute solitary waves of arbitrary amplitude. These calculations confirm and extend the calculations of Byatt-Smith &amp; Longuet-Higgins (1976) for very steep waves.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112083002050</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 1983-11, Vol.136 (1), p.63-71
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_23125153
source Cambridge University Press:JISC Collections:Full Collection Digital Archives (STM and HSS) (218 titles)
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic waves
Physics
title Accurate computations for steep solitary waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20computations%20for%20steep%20solitary%20waves&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Hunter,%20J.%20K.&rft.date=1983-11-01&rft.volume=136&rft.issue=1&rft.spage=63&rft.epage=71&rft.pages=63-71&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112083002050&rft_dat=%3Cproquest_cross%3E13790405%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13790405&rft_id=info:pmid/&rft_cupid=10_1017_S0022112083002050&rfr_iscdi=true