Loading…
Accurate computations for steep solitary waves
Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. A numerical scheme based on series truncation is presented to calculate the highest solitary wave. It is found that the ratio of the amplitude of the wave versus the depth is 0.83322. This value is compared with the...
Saved in:
Published in: | Journal of fluid mechanics 1983-11, Vol.136 (1), p.63-71 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43 |
---|---|
cites | cdi_FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43 |
container_end_page | 71 |
container_issue | 1 |
container_start_page | 63 |
container_title | Journal of fluid mechanics |
container_volume | 136 |
creator | Hunter, J. K. Vanden-Broeck, J.-M. |
description | Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. A numerical scheme based on series truncation is presented to calculate the highest solitary wave. It is found that the ratio of the amplitude of the wave versus the depth is 0.83322. This value is compared with the values obtained by previous investigators. In addition, another numerical scheme based on an integral-equation formulation is derived to compute solitary waves of arbitrary amplitude. These calculations confirm and extend the calculations of Byatt-Smith & Longuet-Higgins (1976) for very steep waves. |
doi_str_mv | 10.1017/S0022112083002050 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23125153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112083002050</cupid><sourcerecordid>13790405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFZ_gLssxF3qvKdZlmqrUBCxorthZjIjqUkmziQ-_r0JLd0IuroXzrmHcz8AzhGcIIjE1SOEGCOE4ZT0G2TwAIwQ5VkqOGWHYDTI6aAfg5MYNxAiAjMxApOZMV1QrU2Mr5quVW3h65g4H5LYWtsk0ZdFq8J38qk-bDwFR06V0Z7t5hg8LW7W89t0db-8m89WqaGctinOsCCKaQYJdzkSzGnIOLNOU8YUdoYKzanIc5FrLZDLNM2oyRFTzhGlKBmDy21uE_x7Z2MrqyIaW5aqtr6LEhOEGWLkXyMiIoMUst6ItkYTfIzBOtmEouofkwjKAaH8hbC_udiFq2hU6YKqTRH3hxlFXLAhOt3aih7Z115W4U1yQQSTfPkgFy9k_Xw9XfeNxoDsqqhKhyJ_tXLju1D3QP8o8wNatI2u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13790405</pqid></control><display><type>article</type><title>Accurate computations for steep solitary waves</title><source>Cambridge University Press:JISC Collections:Full Collection Digital Archives (STM and HSS) (218 titles)</source><creator>Hunter, J. K. ; Vanden-Broeck, J.-M.</creator><creatorcontrib>Hunter, J. K. ; Vanden-Broeck, J.-M.</creatorcontrib><description>Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. A numerical scheme based on series truncation is presented to calculate the highest solitary wave. It is found that the ratio of the amplitude of the wave versus the depth is 0.83322. This value is compared with the values obtained by previous investigators. In addition, another numerical scheme based on an integral-equation formulation is derived to compute solitary waves of arbitrary amplitude. These calculations confirm and extend the calculations of Byatt-Smith & Longuet-Higgins (1976) for very steep waves.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112083002050</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic waves ; Physics</subject><ispartof>Journal of fluid mechanics, 1983-11, Vol.136 (1), p.63-71</ispartof><rights>1983 Cambridge University Press</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43</citedby><cites>FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112083002050/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,55689</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9416755$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunter, J. K.</creatorcontrib><creatorcontrib>Vanden-Broeck, J.-M.</creatorcontrib><title>Accurate computations for steep solitary waves</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. A numerical scheme based on series truncation is presented to calculate the highest solitary wave. It is found that the ratio of the amplitude of the wave versus the depth is 0.83322. This value is compared with the values obtained by previous investigators. In addition, another numerical scheme based on an integral-equation formulation is derived to compute solitary waves of arbitrary amplitude. These calculations confirm and extend the calculations of Byatt-Smith & Longuet-Higgins (1976) for very steep waves.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic waves</subject><subject>Physics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFZ_gLssxF3qvKdZlmqrUBCxorthZjIjqUkmziQ-_r0JLd0IuroXzrmHcz8AzhGcIIjE1SOEGCOE4ZT0G2TwAIwQ5VkqOGWHYDTI6aAfg5MYNxAiAjMxApOZMV1QrU2Mr5quVW3h65g4H5LYWtsk0ZdFq8J38qk-bDwFR06V0Z7t5hg8LW7W89t0db-8m89WqaGctinOsCCKaQYJdzkSzGnIOLNOU8YUdoYKzanIc5FrLZDLNM2oyRFTzhGlKBmDy21uE_x7Z2MrqyIaW5aqtr6LEhOEGWLkXyMiIoMUst6ItkYTfIzBOtmEouofkwjKAaH8hbC_udiFq2hU6YKqTRH3hxlFXLAhOt3aih7Z115W4U1yQQSTfPkgFy9k_Xw9XfeNxoDsqqhKhyJ_tXLju1D3QP8o8wNatI2u</recordid><startdate>19831101</startdate><enddate>19831101</enddate><creator>Hunter, J. K.</creator><creator>Vanden-Broeck, J.-M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19831101</creationdate><title>Accurate computations for steep solitary waves</title><author>Hunter, J. K. ; Vanden-Broeck, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic waves</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, J. K.</creatorcontrib><creatorcontrib>Vanden-Broeck, J.-M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, J. K.</au><au>Vanden-Broeck, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate computations for steep solitary waves</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1983-11-01</date><risdate>1983</risdate><volume>136</volume><issue>1</issue><spage>63</spage><epage>71</epage><pages>63-71</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Finite-amplitude solitary waves in water of arbitrary uniform depth are considered. A numerical scheme based on series truncation is presented to calculate the highest solitary wave. It is found that the ratio of the amplitude of the wave versus the depth is 0.83322. This value is compared with the values obtained by previous investigators. In addition, another numerical scheme based on an integral-equation formulation is derived to compute solitary waves of arbitrary amplitude. These calculations confirm and extend the calculations of Byatt-Smith & Longuet-Higgins (1976) for very steep waves.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112083002050</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 1983-11, Vol.136 (1), p.63-71 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_23125153 |
source | Cambridge University Press:JISC Collections:Full Collection Digital Archives (STM and HSS) (218 titles) |
subjects | Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamic waves Physics |
title | Accurate computations for steep solitary waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20computations%20for%20steep%20solitary%20waves&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Hunter,%20J.%20K.&rft.date=1983-11-01&rft.volume=136&rft.issue=1&rft.spage=63&rft.epage=71&rft.pages=63-71&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112083002050&rft_dat=%3Cproquest_cross%3E13790405%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-29273a5b5036fd175fb0565efb455a2fc47b647dd7dbb71f9b494cd15aff3aa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13790405&rft_id=info:pmid/&rft_cupid=10_1017_S0022112083002050&rfr_iscdi=true |