Loading…

Nanosized MoSe2@Carbon Matrix: A Stable Host Material for the Highly Reversible Storage of Potassium and Aluminum Ions

Owing to their low cost and abundant reserves relative to conventional lithium-ion batteries (LIBs), potassium-ion batteries (PIBs), and aluminum-ion batteries (AIBs) have shown appealing potential for electrochemical energy storage, but progress so far has been limited by the lack of suitable elect...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-11, Vol.11 (47), p.44333-44341
Main Authors: Zhao, Zhongchen, Hu, Zhengqiang, Liang, Huanyu, Li, Shandong, Wang, Haotian, Gao, Fei, Sang, Xiancheng, Li, Hongsen
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 44341
container_issue 47
container_start_page 44333
container_title ACS applied materials & interfaces
container_volume 11
creator Zhao, Zhongchen
Hu, Zhengqiang
Liang, Huanyu
Li, Shandong
Wang, Haotian
Gao, Fei
Sang, Xiancheng
Li, Hongsen
description Owing to their low cost and abundant reserves relative to conventional lithium-ion batteries (LIBs), potassium-ion batteries (PIBs), and aluminum-ion batteries (AIBs) have shown appealing potential for electrochemical energy storage, but progress so far has been limited by the lack of suitable electrode materials. In this work, we demonstrated a facile strategy to achieve highly reversible potassium and aluminum ions storage in strongly coupled nanosized MoSe2@carbon matrix, induced through an ion complexation strategy. We present a broad range of electrochemical characterization of the synthesized product that exhibits high specific capacities, good rate capability, and excellent cycling stability toward PIBs and AIBs. Through a series of systematic ex situ X-ray photoelectron spectroscopy (XPS) characterizations and density functional theory (DFT) calculations, the Al3+ intercalation mechanism of MoSe2-based AIBs are elucidated. Moreover, both the assembled PIBs and AIBs worked well when exposed to low and high temperatures within the range of −10 to 50 °C, showing promise for energy storage devices in harsh environment. The present study provides new insights into the exploration of MoSe2 as high-performance electrode materials for PIBs and AIBs.
doi_str_mv 10.1021/acsami.9b16155
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2312555426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312555426</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-4db748dd0708fd9b59317749db17e50c9545cbfe51a1e99068c6dc59a934a7c3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUh4MoOKdXzzmK0JmkSdt4cozpBpuK2728NumW0TaapEP96-3Y8PR-78fH4_EhdEvJiBJGH6D00JiRLGhChThDAyo5jzIm2Pl_5vwSXXm_IySJGREDtH-F1nrzqxVe2pVmTxNwhW3xEoIz3494jFcBilrjmfXh0GpnoMaVdThs-9ZstvUP_tB77bw5cKtgHWw0thV-twG8N12DoVV4XHeNaftlblt_jS4qqL2-Oc0hWj9P15NZtHh7mU_GiwgYi0PEVZHyTCmSkqxSshAypmnKpSpoqgUppeCiLCotKFAtJUmyMlGlkCBjDmkZD9Hd8eyns1-d9iFvjC91XUOrbedzFlMmhOAs6dH7I9przHe2c23_V05JfnCbH93mJ7fxH0Z9bhM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312555426</pqid></control><display><type>article</type><title>Nanosized MoSe2@Carbon Matrix: A Stable Host Material for the Highly Reversible Storage of Potassium and Aluminum Ions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Zhongchen ; Hu, Zhengqiang ; Liang, Huanyu ; Li, Shandong ; Wang, Haotian ; Gao, Fei ; Sang, Xiancheng ; Li, Hongsen</creator><creatorcontrib>Zhao, Zhongchen ; Hu, Zhengqiang ; Liang, Huanyu ; Li, Shandong ; Wang, Haotian ; Gao, Fei ; Sang, Xiancheng ; Li, Hongsen</creatorcontrib><description>Owing to their low cost and abundant reserves relative to conventional lithium-ion batteries (LIBs), potassium-ion batteries (PIBs), and aluminum-ion batteries (AIBs) have shown appealing potential for electrochemical energy storage, but progress so far has been limited by the lack of suitable electrode materials. In this work, we demonstrated a facile strategy to achieve highly reversible potassium and aluminum ions storage in strongly coupled nanosized MoSe2@carbon matrix, induced through an ion complexation strategy. We present a broad range of electrochemical characterization of the synthesized product that exhibits high specific capacities, good rate capability, and excellent cycling stability toward PIBs and AIBs. Through a series of systematic ex situ X-ray photoelectron spectroscopy (XPS) characterizations and density functional theory (DFT) calculations, the Al3+ intercalation mechanism of MoSe2-based AIBs are elucidated. Moreover, both the assembled PIBs and AIBs worked well when exposed to low and high temperatures within the range of −10 to 50 °C, showing promise for energy storage devices in harsh environment. The present study provides new insights into the exploration of MoSe2 as high-performance electrode materials for PIBs and AIBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b16155</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-11, Vol.11 (47), p.44333-44341</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8105-7612 ; 0000-0001-6453-2135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Zhongchen</creatorcontrib><creatorcontrib>Hu, Zhengqiang</creatorcontrib><creatorcontrib>Liang, Huanyu</creatorcontrib><creatorcontrib>Li, Shandong</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Sang, Xiancheng</creatorcontrib><creatorcontrib>Li, Hongsen</creatorcontrib><title>Nanosized MoSe2@Carbon Matrix: A Stable Host Material for the Highly Reversible Storage of Potassium and Aluminum Ions</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Owing to their low cost and abundant reserves relative to conventional lithium-ion batteries (LIBs), potassium-ion batteries (PIBs), and aluminum-ion batteries (AIBs) have shown appealing potential for electrochemical energy storage, but progress so far has been limited by the lack of suitable electrode materials. In this work, we demonstrated a facile strategy to achieve highly reversible potassium and aluminum ions storage in strongly coupled nanosized MoSe2@carbon matrix, induced through an ion complexation strategy. We present a broad range of electrochemical characterization of the synthesized product that exhibits high specific capacities, good rate capability, and excellent cycling stability toward PIBs and AIBs. Through a series of systematic ex situ X-ray photoelectron spectroscopy (XPS) characterizations and density functional theory (DFT) calculations, the Al3+ intercalation mechanism of MoSe2-based AIBs are elucidated. Moreover, both the assembled PIBs and AIBs worked well when exposed to low and high temperatures within the range of −10 to 50 °C, showing promise for energy storage devices in harsh environment. The present study provides new insights into the exploration of MoSe2 as high-performance electrode materials for PIBs and AIBs.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAUh4MoOKdXzzmK0JmkSdt4cozpBpuK2728NumW0TaapEP96-3Y8PR-78fH4_EhdEvJiBJGH6D00JiRLGhChThDAyo5jzIm2Pl_5vwSXXm_IySJGREDtH-F1nrzqxVe2pVmTxNwhW3xEoIz3494jFcBilrjmfXh0GpnoMaVdThs-9ZstvUP_tB77bw5cKtgHWw0thV-twG8N12DoVV4XHeNaftlblt_jS4qqL2-Oc0hWj9P15NZtHh7mU_GiwgYi0PEVZHyTCmSkqxSshAypmnKpSpoqgUppeCiLCotKFAtJUmyMlGlkCBjDmkZD9Hd8eyns1-d9iFvjC91XUOrbedzFlMmhOAs6dH7I9przHe2c23_V05JfnCbH93mJ7fxH0Z9bhM</recordid><startdate>20191127</startdate><enddate>20191127</enddate><creator>Zhao, Zhongchen</creator><creator>Hu, Zhengqiang</creator><creator>Liang, Huanyu</creator><creator>Li, Shandong</creator><creator>Wang, Haotian</creator><creator>Gao, Fei</creator><creator>Sang, Xiancheng</creator><creator>Li, Hongsen</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8105-7612</orcidid><orcidid>https://orcid.org/0000-0001-6453-2135</orcidid></search><sort><creationdate>20191127</creationdate><title>Nanosized MoSe2@Carbon Matrix: A Stable Host Material for the Highly Reversible Storage of Potassium and Aluminum Ions</title><author>Zhao, Zhongchen ; Hu, Zhengqiang ; Liang, Huanyu ; Li, Shandong ; Wang, Haotian ; Gao, Fei ; Sang, Xiancheng ; Li, Hongsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-4db748dd0708fd9b59317749db17e50c9545cbfe51a1e99068c6dc59a934a7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhongchen</creatorcontrib><creatorcontrib>Hu, Zhengqiang</creatorcontrib><creatorcontrib>Liang, Huanyu</creatorcontrib><creatorcontrib>Li, Shandong</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Sang, Xiancheng</creatorcontrib><creatorcontrib>Li, Hongsen</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhongchen</au><au>Hu, Zhengqiang</au><au>Liang, Huanyu</au><au>Li, Shandong</au><au>Wang, Haotian</au><au>Gao, Fei</au><au>Sang, Xiancheng</au><au>Li, Hongsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanosized MoSe2@Carbon Matrix: A Stable Host Material for the Highly Reversible Storage of Potassium and Aluminum Ions</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-11-27</date><risdate>2019</risdate><volume>11</volume><issue>47</issue><spage>44333</spage><epage>44341</epage><pages>44333-44341</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Owing to their low cost and abundant reserves relative to conventional lithium-ion batteries (LIBs), potassium-ion batteries (PIBs), and aluminum-ion batteries (AIBs) have shown appealing potential for electrochemical energy storage, but progress so far has been limited by the lack of suitable electrode materials. In this work, we demonstrated a facile strategy to achieve highly reversible potassium and aluminum ions storage in strongly coupled nanosized MoSe2@carbon matrix, induced through an ion complexation strategy. We present a broad range of electrochemical characterization of the synthesized product that exhibits high specific capacities, good rate capability, and excellent cycling stability toward PIBs and AIBs. Through a series of systematic ex situ X-ray photoelectron spectroscopy (XPS) characterizations and density functional theory (DFT) calculations, the Al3+ intercalation mechanism of MoSe2-based AIBs are elucidated. Moreover, both the assembled PIBs and AIBs worked well when exposed to low and high temperatures within the range of −10 to 50 °C, showing promise for energy storage devices in harsh environment. The present study provides new insights into the exploration of MoSe2 as high-performance electrode materials for PIBs and AIBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.9b16155</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8105-7612</orcidid><orcidid>https://orcid.org/0000-0001-6453-2135</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-11, Vol.11 (47), p.44333-44341
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2312555426
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Nanosized MoSe2@Carbon Matrix: A Stable Host Material for the Highly Reversible Storage of Potassium and Aluminum Ions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanosized%20MoSe2@Carbon%20Matrix:%20A%20Stable%20Host%20Material%20for%20the%20Highly%20Reversible%20Storage%20of%20Potassium%20and%20Aluminum%20Ions&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhao,%20Zhongchen&rft.date=2019-11-27&rft.volume=11&rft.issue=47&rft.spage=44333&rft.epage=44341&rft.pages=44333-44341&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b16155&rft_dat=%3Cproquest_acs_j%3E2312555426%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a223t-4db748dd0708fd9b59317749db17e50c9545cbfe51a1e99068c6dc59a934a7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312555426&rft_id=info:pmid/&rfr_iscdi=true