Loading…
Regular-Orbit-Engineered Chaotic Photon Transport in Mixed Phase Space
The dynamical evolution of light in asymmetric microcavities is of primary interest for broadband optical coupling and enhanced light-matter interaction. Here, we propose and demonstrate that the chaos-assisted photon transport can be engineered by regular periodic orbits in the momentum-position ph...
Saved in:
Published in: | Physical review letters 2019-10, Vol.123 (17), p.1-173903, Article 173903 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dynamical evolution of light in asymmetric microcavities is of primary interest for broadband optical coupling and enhanced light-matter interaction. Here, we propose and demonstrate that the chaos-assisted photon transport can be engineered by regular periodic orbits in the momentum-position phase space of an asymmetric microcavity. Remarkably, light at different initial states experiences different evolution pathways, following either regular-chaotic channels or pure chaotic channels. Experimentally, we develop a nanofiber technique to accurately control the excitation position of light in the phase space. We find that the coupling to high-Q whispering gallery modes depends strongly on excitation in islands or chaotic sea, showing a good agreement with the theoretical prediction. The engineered chaotic photon transport has potential in light manipulation, broadband photonic devices, and phase-space reconstruction. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.123.173903 |