Loading…

New avenues of controlling microbial infections through anti-microbial and anti-biofilm potentials of green mono-and multi-metallic nanoparticles: A review

Nanoparticles synthesized through the green route deserve special mention because this green technology is not only energy-efficient and cost-effective but also amenable to the environment. Various biological resources have been used for the generation of these ‘green nanoparticles’. Biological wast...

Full description

Saved in:
Bibliographic Details
Published in:Journal of microbiological methods 2019-12, Vol.167, p.105766-105766, Article 105766
Main Authors: Das, Palashpriya, Karankar, Vijayshree S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoparticles synthesized through the green route deserve special mention because this green technology is not only energy-efficient and cost-effective but also amenable to the environment. Various biological resources have been used for the generation of these ‘green nanoparticles’. Biological wastes have also been focused in this direction thereby promoting the value of waste. Reports indicate that green nanoparticles exhibit remarkable antimicrobial activitiesboth singly as well as in combination with standard antibiotics. The current phenomenon of multi-drug resistance has resulted due to indiscriminate administration of high-doses of antibiotics followed by significant toxicity. In the face of this emergence of drug-resistant microbesthe efficacy of green nanoparticles might prove greatly beneficial. Microbial biofilm is another hurdle in the effective treatment of diseases as the microorganismsbeing embedded in the meshwork of the biofilmevade the antimicrobial agents. Nanoparticles may act as a ray of hope on the face of this challenge tooas they not only destroy the biofilms but also lessen the doses of antibiotics requiredwhen administered in combination with the nanoparticles. It should be further noted that the resistance mechanisms exhibited by the microorganisms seem not that relevant for nanoparticles. The current review, to the best of our knowledgefocuses on the structures of these green nanoparticles along with their biomedical potentials. It is interesting to note how a variety of structures are generated by using resources like microbes or plants or plant products and how the structure affects their activities. This study might pave the way for further development in this arena and future work may be taken up in identifying the detailed mechanism by which ‘green’ synthesis empowers nanoparticles to kill pathogenic microbes.
ISSN:0167-7012
1872-8359
DOI:10.1016/j.mimet.2019.105766