Loading…

Unexpected dynamical effects change the lambda-doublet propensity in the tunneling region for the O(3P) + H2 reaction

One of the most relevant features of the O(3P) + H2 reaction is that it occurs on two different potential energy surfaces (PESs) of symmetries A′ and A′′ that correlate reactants and products. The respective saddle points, which correspond to a collinear arrangement, are the same for both PESs, whil...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2019, Vol.21 (45), p.25389-25396
Main Authors: Jambrina, P G, Zanchet, A, Menéndez, M, Herrero, V J, Aoiz, F J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 25396
container_issue 45
container_start_page 25389
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Jambrina, P G
Zanchet, A
Menéndez, M
Herrero, V J
Aoiz, F J
description One of the most relevant features of the O(3P) + H2 reaction is that it occurs on two different potential energy surfaces (PESs) of symmetries A′ and A′′ that correlate reactants and products. The respective saddle points, which correspond to a collinear arrangement, are the same for both PESs, whilst the barrier height rises more abruptly on the 3A′ PES than on the 3A′′ PES. Accordingly, the reactivity on the 3A′′ PES should be always higher than on the 3A′ PES. In this work, we present accurate quantum-scattering calculations showing that this is not always the case for rotationless reactants, where dynamical factors near the reaction threshold cause the 3A′ PES to dominate at energies around the barrier. Further calculation of cross sections and Λ-doublet populations has allowed us to establish how the reaction mechanism changes from the deep tunneling regime to hyperthermal energies.
doi_str_mv 10.1039/c9cp04690a
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2313655522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313655522</sourcerecordid><originalsourceid>FETCH-LOGICAL-g289t-c03ae1d76950595f6b724b430c7149feb80c8835c452cca26fef580360b647fc3</originalsourceid><addsrcrecordid>eNpdjk1Lw0AURQdRsFY3_oIBNxWJzncySylqhUJd2HWZTN6kKdNJzEzA_ntjFReu7uOew-MidE3JPSVcP1htOyKUJuYETahQPNOkEKd_d67O0UWMO0IIlZRP0LAO8NmBTVDh6hDMvrHGY3BurCK2WxNqwGkL2Jt9WZmsaofSQ8Jd33YQYpMOuAlHIQ0hgG9CjXuomzZg1_ZHsJrxt1t8hxdsJMamkV2iM2d8hKvfnKL189P7fJEtVy-v88dlVrNCp8wSboBWudKSSC2dKnMmSsGJzanQDsqC2KLg0grJrDVMOXCyIFyRUoncWT5Fs5-_49yPAWLa7JtowXsToB3ihnHKlZSSsVG9-afu2qEP47pvS2ouSJHzL7hxamc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315934087</pqid></control><display><type>article</type><title>Unexpected dynamical effects change the lambda-doublet propensity in the tunneling region for the O(3P) + H2 reaction</title><source>Royal Society of Chemistry</source><creator>Jambrina, P G ; Zanchet, A ; Menéndez, M ; Herrero, V J ; Aoiz, F J</creator><creatorcontrib>Jambrina, P G ; Zanchet, A ; Menéndez, M ; Herrero, V J ; Aoiz, F J</creatorcontrib><description>One of the most relevant features of the O(3P) + H2 reaction is that it occurs on two different potential energy surfaces (PESs) of symmetries A′ and A′′ that correlate reactants and products. The respective saddle points, which correspond to a collinear arrangement, are the same for both PESs, whilst the barrier height rises more abruptly on the 3A′ PES than on the 3A′′ PES. Accordingly, the reactivity on the 3A′′ PES should be always higher than on the 3A′ PES. In this work, we present accurate quantum-scattering calculations showing that this is not always the case for rotationless reactants, where dynamical factors near the reaction threshold cause the 3A′ PES to dominate at energies around the barrier. Further calculation of cross sections and Λ-doublet populations has allowed us to establish how the reaction mechanism changes from the deep tunneling regime to hyperthermal energies.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp04690a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Mathematical analysis ; Potential energy ; Reaction mechanisms ; Saddle points</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (45), p.25389-25396</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Jambrina, P G</creatorcontrib><creatorcontrib>Zanchet, A</creatorcontrib><creatorcontrib>Menéndez, M</creatorcontrib><creatorcontrib>Herrero, V J</creatorcontrib><creatorcontrib>Aoiz, F J</creatorcontrib><title>Unexpected dynamical effects change the lambda-doublet propensity in the tunneling region for the O(3P) + H2 reaction</title><title>Physical chemistry chemical physics : PCCP</title><description>One of the most relevant features of the O(3P) + H2 reaction is that it occurs on two different potential energy surfaces (PESs) of symmetries A′ and A′′ that correlate reactants and products. The respective saddle points, which correspond to a collinear arrangement, are the same for both PESs, whilst the barrier height rises more abruptly on the 3A′ PES than on the 3A′′ PES. Accordingly, the reactivity on the 3A′′ PES should be always higher than on the 3A′ PES. In this work, we present accurate quantum-scattering calculations showing that this is not always the case for rotationless reactants, where dynamical factors near the reaction threshold cause the 3A′ PES to dominate at energies around the barrier. Further calculation of cross sections and Λ-doublet populations has allowed us to establish how the reaction mechanism changes from the deep tunneling regime to hyperthermal energies.</description><subject>Mathematical analysis</subject><subject>Potential energy</subject><subject>Reaction mechanisms</subject><subject>Saddle points</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdjk1Lw0AURQdRsFY3_oIBNxWJzncySylqhUJd2HWZTN6kKdNJzEzA_ntjFReu7uOew-MidE3JPSVcP1htOyKUJuYETahQPNOkEKd_d67O0UWMO0IIlZRP0LAO8NmBTVDh6hDMvrHGY3BurCK2WxNqwGkL2Jt9WZmsaofSQ8Jd33YQYpMOuAlHIQ0hgG9CjXuomzZg1_ZHsJrxt1t8hxdsJMamkV2iM2d8hKvfnKL189P7fJEtVy-v88dlVrNCp8wSboBWudKSSC2dKnMmSsGJzanQDsqC2KLg0grJrDVMOXCyIFyRUoncWT5Fs5-_49yPAWLa7JtowXsToB3ihnHKlZSSsVG9-afu2qEP47pvS2ouSJHzL7hxamc</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Jambrina, P G</creator><creator>Zanchet, A</creator><creator>Menéndez, M</creator><creator>Herrero, V J</creator><creator>Aoiz, F J</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>2019</creationdate><title>Unexpected dynamical effects change the lambda-doublet propensity in the tunneling region for the O(3P) + H2 reaction</title><author>Jambrina, P G ; Zanchet, A ; Menéndez, M ; Herrero, V J ; Aoiz, F J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g289t-c03ae1d76950595f6b724b430c7149feb80c8835c452cca26fef580360b647fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematical analysis</topic><topic>Potential energy</topic><topic>Reaction mechanisms</topic><topic>Saddle points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jambrina, P G</creatorcontrib><creatorcontrib>Zanchet, A</creatorcontrib><creatorcontrib>Menéndez, M</creatorcontrib><creatorcontrib>Herrero, V J</creatorcontrib><creatorcontrib>Aoiz, F J</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jambrina, P G</au><au>Zanchet, A</au><au>Menéndez, M</au><au>Herrero, V J</au><au>Aoiz, F J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unexpected dynamical effects change the lambda-doublet propensity in the tunneling region for the O(3P) + H2 reaction</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>45</issue><spage>25389</spage><epage>25396</epage><pages>25389-25396</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>One of the most relevant features of the O(3P) + H2 reaction is that it occurs on two different potential energy surfaces (PESs) of symmetries A′ and A′′ that correlate reactants and products. The respective saddle points, which correspond to a collinear arrangement, are the same for both PESs, whilst the barrier height rises more abruptly on the 3A′ PES than on the 3A′′ PES. Accordingly, the reactivity on the 3A′′ PES should be always higher than on the 3A′ PES. In this work, we present accurate quantum-scattering calculations showing that this is not always the case for rotationless reactants, where dynamical factors near the reaction threshold cause the 3A′ PES to dominate at energies around the barrier. Further calculation of cross sections and Λ-doublet populations has allowed us to establish how the reaction mechanism changes from the deep tunneling regime to hyperthermal energies.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp04690a</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019, Vol.21 (45), p.25389-25396
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2313655522
source Royal Society of Chemistry
subjects Mathematical analysis
Potential energy
Reaction mechanisms
Saddle points
title Unexpected dynamical effects change the lambda-doublet propensity in the tunneling region for the O(3P) + H2 reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unexpected%20dynamical%20effects%20change%20the%20lambda-doublet%20propensity%20in%20the%20tunneling%20region%20for%20the%20O(3P)%20+%20H2%20reaction&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Jambrina,%20P%20G&rft.date=2019&rft.volume=21&rft.issue=45&rft.spage=25389&rft.epage=25396&rft.pages=25389-25396&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp04690a&rft_dat=%3Cproquest%3E2313655522%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g289t-c03ae1d76950595f6b724b430c7149feb80c8835c452cca26fef580360b647fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315934087&rft_id=info:pmid/&rfr_iscdi=true