Loading…

Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins

Mycobacterium tuberculosis is able to transition into a dormant state, causing a latent state of tuberculosis. Dormant mycobacteria acquire phenotypic resistance to all known antibacterial drugs; they are also able to maintain vitality in the host for decades and become active, causing the active fo...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2019-12, Vol.103 (23-24), p.9687-9695
Main Authors: Shleeva, Margarita O., Savitsky, Alexander P., Nikitushkin, Vadim D., Solovyev, Iliya D., Kazachkina, Nataliya I., Perevarov, Vladimir V., Kaprelyants, Arseny S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53
cites cdi_FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53
container_end_page 9695
container_issue 23-24
container_start_page 9687
container_title Applied microbiology and biotechnology
container_volume 103
creator Shleeva, Margarita O.
Savitsky, Alexander P.
Nikitushkin, Vadim D.
Solovyev, Iliya D.
Kazachkina, Nataliya I.
Perevarov, Vladimir V.
Kaprelyants, Arseny S.
description Mycobacterium tuberculosis is able to transition into a dormant state, causing a latent state of tuberculosis. Dormant mycobacteria acquire phenotypic resistance to all known antibacterial drugs; they are also able to maintain vitality in the host for decades and become active, causing the active form of the disease. In order to cure latent tuberculosis, new approaches should be developed. Earlier, we discovered accumulation in significant concentrations of porphyrins in dormant Mycobacterium smegmatis , which is a close, fast-growing relative of the causative agent of tuberculosis. In this study, we explore a new possibility to kill dormant mycobacteria by photodynamic inactivation (PDI) using accumulated porphyrins as endogenous photosensitisers. The dormant M. smegmatis were obtained under gradual acidification in Sauton’s medium, for 14 days. Cells were exposed to light with different wavelengths emitted by three Spectra X light-emitting diodes (395/25, 470/24, 575/25 nm) and one separated 634-nm LED for 15 min. An increase in the concentration of coproporphyrin in M. smegmatis after 6 days of growth correlated with the beginning of a decrease in metabolic activity and formation of ovoid dormant forms. Dormant bacteria were sensitive to PDI and killed after 15–30 min of illumination, in contrast to active cells. The greatest inactivation of dormant mycobacteria occurred at 395 and 575 nm, which coincides with the main maximum of the absorption spectrum of extracted porphyrins. We, for the first time, demonstrate a successful application of PDI for inactivation of dormant mycobacteria, due to significant accumulation of endogenous photosensitisers—porphyrins.
doi_str_mv 10.1007/s00253-019-10197-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314007178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606399660</galeid><sourcerecordid>A606399660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModq1-AR9kwBd9mJpMZvLnsRSthYqi9jlkMnemKTvJmmSK--17162WFZFAAvf-zuHeHEJeMnrCKJXvMqVNx2vKdM3wkjV_RFas5U1NBWsfkxVlsqtlp9UReZbzDaWsUUI8JUecScaFpCty9eU6luiDdcXf2uJjqOJYDTHNNpTq09bFHluQ_DJXeYZpRiZXwwJViZUvuYIwxAlCXHK1iWlzvU0-5OfkyWjXGV7cv8fk6sP772cf68vP5xdnp5e16xgvNbdCK6saKZjuYZAc11C6763tRi17heO31HImpJWOubHloLRDpLN67G3Hj8mbve8mxR8L5GJmnx2s1zYATmQazlr8KSYVoq__Qm_ikgJOt6MEb6ii3QM12TUYH8ZYknU7U3MqqOBaC0GROvkHhWeA2bsYYPRYPxC8PRAgU-BnmeySs7n49vWQbfasSzHnBKPZJD_btDWMml3uZp-7wcjNr9wNR9Gr--2Wfobhj-R30AjwPZCxFSZID-v_x_YOqny14A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316320805</pqid></control><display><type>article</type><title>Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Shleeva, Margarita O. ; Savitsky, Alexander P. ; Nikitushkin, Vadim D. ; Solovyev, Iliya D. ; Kazachkina, Nataliya I. ; Perevarov, Vladimir V. ; Kaprelyants, Arseny S.</creator><creatorcontrib>Shleeva, Margarita O. ; Savitsky, Alexander P. ; Nikitushkin, Vadim D. ; Solovyev, Iliya D. ; Kazachkina, Nataliya I. ; Perevarov, Vladimir V. ; Kaprelyants, Arseny S.</creatorcontrib><description>Mycobacterium tuberculosis is able to transition into a dormant state, causing a latent state of tuberculosis. Dormant mycobacteria acquire phenotypic resistance to all known antibacterial drugs; they are also able to maintain vitality in the host for decades and become active, causing the active form of the disease. In order to cure latent tuberculosis, new approaches should be developed. Earlier, we discovered accumulation in significant concentrations of porphyrins in dormant Mycobacterium smegmatis , which is a close, fast-growing relative of the causative agent of tuberculosis. In this study, we explore a new possibility to kill dormant mycobacteria by photodynamic inactivation (PDI) using accumulated porphyrins as endogenous photosensitisers. The dormant M. smegmatis were obtained under gradual acidification in Sauton’s medium, for 14 days. Cells were exposed to light with different wavelengths emitted by three Spectra X light-emitting diodes (395/25, 470/24, 575/25 nm) and one separated 634-nm LED for 15 min. An increase in the concentration of coproporphyrin in M. smegmatis after 6 days of growth correlated with the beginning of a decrease in metabolic activity and formation of ovoid dormant forms. Dormant bacteria were sensitive to PDI and killed after 15–30 min of illumination, in contrast to active cells. The greatest inactivation of dormant mycobacteria occurred at 395 and 575 nm, which coincides with the main maximum of the absorption spectrum of extracted porphyrins. We, for the first time, demonstrate a successful application of PDI for inactivation of dormant mycobacteria, due to significant accumulation of endogenous photosensitisers—porphyrins.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-019-10197-3</identifier><identifier>PMID: 31713670</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption spectra ; Accumulation ; Acidification ; Applied Microbial and Cell Physiology ; Biomedical and Life Sciences ; Biotechnology ; Culture Media - chemistry ; Deactivation ; Drug resistance in microorganisms ; Inactivation ; Life Sciences ; Light ; Light-emitting diodes ; Microbial Genetics and Genomics ; Microbial Sensitivity Tests ; Microbial Viability - radiation effects ; Microbiology ; Mycobacterium smegmatis ; Mycobacterium smegmatis - metabolism ; Mycobacterium smegmatis - physiology ; Mycobacterium smegmatis - radiation effects ; Organic light emitting diodes ; Photoinactivation ; Photosensitizing Agents - metabolism ; Porphyrins ; Porphyrins - metabolism ; Spectral emittance ; Tuberculosis ; Wavelengths</subject><ispartof>Applied microbiology and biotechnology, 2019-12, Vol.103 (23-24), p.9687-9695</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53</citedby><cites>FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53</cites><orcidid>0000-0001-7286-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2316320805/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2316320805?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31713670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shleeva, Margarita O.</creatorcontrib><creatorcontrib>Savitsky, Alexander P.</creatorcontrib><creatorcontrib>Nikitushkin, Vadim D.</creatorcontrib><creatorcontrib>Solovyev, Iliya D.</creatorcontrib><creatorcontrib>Kazachkina, Nataliya I.</creatorcontrib><creatorcontrib>Perevarov, Vladimir V.</creatorcontrib><creatorcontrib>Kaprelyants, Arseny S.</creatorcontrib><title>Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Mycobacterium tuberculosis is able to transition into a dormant state, causing a latent state of tuberculosis. Dormant mycobacteria acquire phenotypic resistance to all known antibacterial drugs; they are also able to maintain vitality in the host for decades and become active, causing the active form of the disease. In order to cure latent tuberculosis, new approaches should be developed. Earlier, we discovered accumulation in significant concentrations of porphyrins in dormant Mycobacterium smegmatis , which is a close, fast-growing relative of the causative agent of tuberculosis. In this study, we explore a new possibility to kill dormant mycobacteria by photodynamic inactivation (PDI) using accumulated porphyrins as endogenous photosensitisers. The dormant M. smegmatis were obtained under gradual acidification in Sauton’s medium, for 14 days. Cells were exposed to light with different wavelengths emitted by three Spectra X light-emitting diodes (395/25, 470/24, 575/25 nm) and one separated 634-nm LED for 15 min. An increase in the concentration of coproporphyrin in M. smegmatis after 6 days of growth correlated with the beginning of a decrease in metabolic activity and formation of ovoid dormant forms. Dormant bacteria were sensitive to PDI and killed after 15–30 min of illumination, in contrast to active cells. The greatest inactivation of dormant mycobacteria occurred at 395 and 575 nm, which coincides with the main maximum of the absorption spectrum of extracted porphyrins. We, for the first time, demonstrate a successful application of PDI for inactivation of dormant mycobacteria, due to significant accumulation of endogenous photosensitisers—porphyrins.</description><subject>Absorption spectra</subject><subject>Accumulation</subject><subject>Acidification</subject><subject>Applied Microbial and Cell Physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Culture Media - chemistry</subject><subject>Deactivation</subject><subject>Drug resistance in microorganisms</subject><subject>Inactivation</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Light-emitting diodes</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbial Sensitivity Tests</subject><subject>Microbial Viability - radiation effects</subject><subject>Microbiology</subject><subject>Mycobacterium smegmatis</subject><subject>Mycobacterium smegmatis - metabolism</subject><subject>Mycobacterium smegmatis - physiology</subject><subject>Mycobacterium smegmatis - radiation effects</subject><subject>Organic light emitting diodes</subject><subject>Photoinactivation</subject><subject>Photosensitizing Agents - metabolism</subject><subject>Porphyrins</subject><subject>Porphyrins - metabolism</subject><subject>Spectral emittance</subject><subject>Tuberculosis</subject><subject>Wavelengths</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kV9rFDEUxYModq1-AR9kwBd9mJpMZvLnsRSthYqi9jlkMnemKTvJmmSK--17162WFZFAAvf-zuHeHEJeMnrCKJXvMqVNx2vKdM3wkjV_RFas5U1NBWsfkxVlsqtlp9UReZbzDaWsUUI8JUecScaFpCty9eU6luiDdcXf2uJjqOJYDTHNNpTq09bFHluQ_DJXeYZpRiZXwwJViZUvuYIwxAlCXHK1iWlzvU0-5OfkyWjXGV7cv8fk6sP772cf68vP5xdnp5e16xgvNbdCK6saKZjuYZAc11C6763tRi17heO31HImpJWOubHloLRDpLN67G3Hj8mbve8mxR8L5GJmnx2s1zYATmQazlr8KSYVoq__Qm_ikgJOt6MEb6ii3QM12TUYH8ZYknU7U3MqqOBaC0GROvkHhWeA2bsYYPRYPxC8PRAgU-BnmeySs7n49vWQbfasSzHnBKPZJD_btDWMml3uZp-7wcjNr9wNR9Gr--2Wfobhj-R30AjwPZCxFSZID-v_x_YOqny14A</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Shleeva, Margarita O.</creator><creator>Savitsky, Alexander P.</creator><creator>Nikitushkin, Vadim D.</creator><creator>Solovyev, Iliya D.</creator><creator>Kazachkina, Nataliya I.</creator><creator>Perevarov, Vladimir V.</creator><creator>Kaprelyants, Arseny S.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7286-9336</orcidid></search><sort><creationdate>20191201</creationdate><title>Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins</title><author>Shleeva, Margarita O. ; Savitsky, Alexander P. ; Nikitushkin, Vadim D. ; Solovyev, Iliya D. ; Kazachkina, Nataliya I. ; Perevarov, Vladimir V. ; Kaprelyants, Arseny S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption spectra</topic><topic>Accumulation</topic><topic>Acidification</topic><topic>Applied Microbial and Cell Physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Culture Media - chemistry</topic><topic>Deactivation</topic><topic>Drug resistance in microorganisms</topic><topic>Inactivation</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Light-emitting diodes</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbial Sensitivity Tests</topic><topic>Microbial Viability - radiation effects</topic><topic>Microbiology</topic><topic>Mycobacterium smegmatis</topic><topic>Mycobacterium smegmatis - metabolism</topic><topic>Mycobacterium smegmatis - physiology</topic><topic>Mycobacterium smegmatis - radiation effects</topic><topic>Organic light emitting diodes</topic><topic>Photoinactivation</topic><topic>Photosensitizing Agents - metabolism</topic><topic>Porphyrins</topic><topic>Porphyrins - metabolism</topic><topic>Spectral emittance</topic><topic>Tuberculosis</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shleeva, Margarita O.</creatorcontrib><creatorcontrib>Savitsky, Alexander P.</creatorcontrib><creatorcontrib>Nikitushkin, Vadim D.</creatorcontrib><creatorcontrib>Solovyev, Iliya D.</creatorcontrib><creatorcontrib>Kazachkina, Nataliya I.</creatorcontrib><creatorcontrib>Perevarov, Vladimir V.</creatorcontrib><creatorcontrib>Kaprelyants, Arseny S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shleeva, Margarita O.</au><au>Savitsky, Alexander P.</au><au>Nikitushkin, Vadim D.</au><au>Solovyev, Iliya D.</au><au>Kazachkina, Nataliya I.</au><au>Perevarov, Vladimir V.</au><au>Kaprelyants, Arseny S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>103</volume><issue>23-24</issue><spage>9687</spage><epage>9695</epage><pages>9687-9695</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Mycobacterium tuberculosis is able to transition into a dormant state, causing a latent state of tuberculosis. Dormant mycobacteria acquire phenotypic resistance to all known antibacterial drugs; they are also able to maintain vitality in the host for decades and become active, causing the active form of the disease. In order to cure latent tuberculosis, new approaches should be developed. Earlier, we discovered accumulation in significant concentrations of porphyrins in dormant Mycobacterium smegmatis , which is a close, fast-growing relative of the causative agent of tuberculosis. In this study, we explore a new possibility to kill dormant mycobacteria by photodynamic inactivation (PDI) using accumulated porphyrins as endogenous photosensitisers. The dormant M. smegmatis were obtained under gradual acidification in Sauton’s medium, for 14 days. Cells were exposed to light with different wavelengths emitted by three Spectra X light-emitting diodes (395/25, 470/24, 575/25 nm) and one separated 634-nm LED for 15 min. An increase in the concentration of coproporphyrin in M. smegmatis after 6 days of growth correlated with the beginning of a decrease in metabolic activity and formation of ovoid dormant forms. Dormant bacteria were sensitive to PDI and killed after 15–30 min of illumination, in contrast to active cells. The greatest inactivation of dormant mycobacteria occurred at 395 and 575 nm, which coincides with the main maximum of the absorption spectrum of extracted porphyrins. We, for the first time, demonstrate a successful application of PDI for inactivation of dormant mycobacteria, due to significant accumulation of endogenous photosensitisers—porphyrins.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31713670</pmid><doi>10.1007/s00253-019-10197-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7286-9336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2019-12, Vol.103 (23-24), p.9687-9695
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2314007178
source ABI/INFORM global; Springer Nature
subjects Absorption spectra
Accumulation
Acidification
Applied Microbial and Cell Physiology
Biomedical and Life Sciences
Biotechnology
Culture Media - chemistry
Deactivation
Drug resistance in microorganisms
Inactivation
Life Sciences
Light
Light-emitting diodes
Microbial Genetics and Genomics
Microbial Sensitivity Tests
Microbial Viability - radiation effects
Microbiology
Mycobacterium smegmatis
Mycobacterium smegmatis - metabolism
Mycobacterium smegmatis - physiology
Mycobacterium smegmatis - radiation effects
Organic light emitting diodes
Photoinactivation
Photosensitizing Agents - metabolism
Porphyrins
Porphyrins - metabolism
Spectral emittance
Tuberculosis
Wavelengths
title Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoinactivation%20of%20dormant%20Mycobacterium%20smegmatis%20due%20to%20its%20endogenous%20porphyrins&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Shleeva,%20Margarita%20O.&rft.date=2019-12-01&rft.volume=103&rft.issue=23-24&rft.spage=9687&rft.epage=9695&rft.pages=9687-9695&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-019-10197-3&rft_dat=%3Cgale_proqu%3EA606399660%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316320805&rft_id=info:pmid/31713670&rft_galeid=A606399660&rfr_iscdi=true