Loading…
Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins
Mycobacterium tuberculosis is able to transition into a dormant state, causing a latent state of tuberculosis. Dormant mycobacteria acquire phenotypic resistance to all known antibacterial drugs; they are also able to maintain vitality in the host for decades and become active, causing the active fo...
Saved in:
Published in: | Applied microbiology and biotechnology 2019-12, Vol.103 (23-24), p.9687-9695 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53 |
container_end_page | 9695 |
container_issue | 23-24 |
container_start_page | 9687 |
container_title | Applied microbiology and biotechnology |
container_volume | 103 |
creator | Shleeva, Margarita O. Savitsky, Alexander P. Nikitushkin, Vadim D. Solovyev, Iliya D. Kazachkina, Nataliya I. Perevarov, Vladimir V. Kaprelyants, Arseny S. |
description | Mycobacterium tuberculosis
is able to transition into a dormant state, causing a latent state of tuberculosis. Dormant mycobacteria acquire phenotypic resistance to all known antibacterial drugs; they are also able to maintain vitality in the host for decades and become active, causing the active form of the disease. In order to cure latent tuberculosis, new approaches should be developed. Earlier, we discovered accumulation in significant concentrations of porphyrins in dormant
Mycobacterium smegmatis
, which is a close, fast-growing relative of the causative agent of tuberculosis. In this study, we explore a new possibility to kill dormant mycobacteria by photodynamic inactivation (PDI) using accumulated porphyrins as endogenous photosensitisers. The dormant
M. smegmatis
were obtained under gradual acidification in Sauton’s medium, for 14 days. Cells were exposed to light with different wavelengths emitted by three Spectra X light-emitting diodes (395/25, 470/24, 575/25 nm) and one separated 634-nm LED for 15 min. An increase in the concentration of coproporphyrin in
M. smegmatis
after 6 days of growth correlated with the beginning of a decrease in metabolic activity and formation of ovoid dormant forms. Dormant bacteria were sensitive to PDI and killed after 15–30 min of illumination, in contrast to active cells. The greatest inactivation of dormant mycobacteria occurred at 395 and 575 nm, which coincides with the main maximum of the absorption spectrum of extracted porphyrins. We, for the first time, demonstrate a successful application of PDI for inactivation of dormant mycobacteria, due to significant accumulation of endogenous photosensitisers—porphyrins. |
doi_str_mv | 10.1007/s00253-019-10197-3 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314007178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606399660</galeid><sourcerecordid>A606399660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModq1-AR9kwBd9mJpMZvLnsRSthYqi9jlkMnemKTvJmmSK--17162WFZFAAvf-zuHeHEJeMnrCKJXvMqVNx2vKdM3wkjV_RFas5U1NBWsfkxVlsqtlp9UReZbzDaWsUUI8JUecScaFpCty9eU6luiDdcXf2uJjqOJYDTHNNpTq09bFHluQ_DJXeYZpRiZXwwJViZUvuYIwxAlCXHK1iWlzvU0-5OfkyWjXGV7cv8fk6sP772cf68vP5xdnp5e16xgvNbdCK6saKZjuYZAc11C6763tRi17heO31HImpJWOubHloLRDpLN67G3Hj8mbve8mxR8L5GJmnx2s1zYATmQazlr8KSYVoq__Qm_ikgJOt6MEb6ii3QM12TUYH8ZYknU7U3MqqOBaC0GROvkHhWeA2bsYYPRYPxC8PRAgU-BnmeySs7n49vWQbfasSzHnBKPZJD_btDWMml3uZp-7wcjNr9wNR9Gr--2Wfobhj-R30AjwPZCxFSZID-v_x_YOqny14A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316320805</pqid></control><display><type>article</type><title>Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Shleeva, Margarita O. ; Savitsky, Alexander P. ; Nikitushkin, Vadim D. ; Solovyev, Iliya D. ; Kazachkina, Nataliya I. ; Perevarov, Vladimir V. ; Kaprelyants, Arseny S.</creator><creatorcontrib>Shleeva, Margarita O. ; Savitsky, Alexander P. ; Nikitushkin, Vadim D. ; Solovyev, Iliya D. ; Kazachkina, Nataliya I. ; Perevarov, Vladimir V. ; Kaprelyants, Arseny S.</creatorcontrib><description>Mycobacterium tuberculosis
is able to transition into a dormant state, causing a latent state of tuberculosis. Dormant mycobacteria acquire phenotypic resistance to all known antibacterial drugs; they are also able to maintain vitality in the host for decades and become active, causing the active form of the disease. In order to cure latent tuberculosis, new approaches should be developed. Earlier, we discovered accumulation in significant concentrations of porphyrins in dormant
Mycobacterium smegmatis
, which is a close, fast-growing relative of the causative agent of tuberculosis. In this study, we explore a new possibility to kill dormant mycobacteria by photodynamic inactivation (PDI) using accumulated porphyrins as endogenous photosensitisers. The dormant
M. smegmatis
were obtained under gradual acidification in Sauton’s medium, for 14 days. Cells were exposed to light with different wavelengths emitted by three Spectra X light-emitting diodes (395/25, 470/24, 575/25 nm) and one separated 634-nm LED for 15 min. An increase in the concentration of coproporphyrin in
M. smegmatis
after 6 days of growth correlated with the beginning of a decrease in metabolic activity and formation of ovoid dormant forms. Dormant bacteria were sensitive to PDI and killed after 15–30 min of illumination, in contrast to active cells. The greatest inactivation of dormant mycobacteria occurred at 395 and 575 nm, which coincides with the main maximum of the absorption spectrum of extracted porphyrins. We, for the first time, demonstrate a successful application of PDI for inactivation of dormant mycobacteria, due to significant accumulation of endogenous photosensitisers—porphyrins.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-019-10197-3</identifier><identifier>PMID: 31713670</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption spectra ; Accumulation ; Acidification ; Applied Microbial and Cell Physiology ; Biomedical and Life Sciences ; Biotechnology ; Culture Media - chemistry ; Deactivation ; Drug resistance in microorganisms ; Inactivation ; Life Sciences ; Light ; Light-emitting diodes ; Microbial Genetics and Genomics ; Microbial Sensitivity Tests ; Microbial Viability - radiation effects ; Microbiology ; Mycobacterium smegmatis ; Mycobacterium smegmatis - metabolism ; Mycobacterium smegmatis - physiology ; Mycobacterium smegmatis - radiation effects ; Organic light emitting diodes ; Photoinactivation ; Photosensitizing Agents - metabolism ; Porphyrins ; Porphyrins - metabolism ; Spectral emittance ; Tuberculosis ; Wavelengths</subject><ispartof>Applied microbiology and biotechnology, 2019-12, Vol.103 (23-24), p.9687-9695</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53</citedby><cites>FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53</cites><orcidid>0000-0001-7286-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2316320805/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2316320805?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31713670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shleeva, Margarita O.</creatorcontrib><creatorcontrib>Savitsky, Alexander P.</creatorcontrib><creatorcontrib>Nikitushkin, Vadim D.</creatorcontrib><creatorcontrib>Solovyev, Iliya D.</creatorcontrib><creatorcontrib>Kazachkina, Nataliya I.</creatorcontrib><creatorcontrib>Perevarov, Vladimir V.</creatorcontrib><creatorcontrib>Kaprelyants, Arseny S.</creatorcontrib><title>Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Mycobacterium tuberculosis
is able to transition into a dormant state, causing a latent state of tuberculosis. Dormant mycobacteria acquire phenotypic resistance to all known antibacterial drugs; they are also able to maintain vitality in the host for decades and become active, causing the active form of the disease. In order to cure latent tuberculosis, new approaches should be developed. Earlier, we discovered accumulation in significant concentrations of porphyrins in dormant
Mycobacterium smegmatis
, which is a close, fast-growing relative of the causative agent of tuberculosis. In this study, we explore a new possibility to kill dormant mycobacteria by photodynamic inactivation (PDI) using accumulated porphyrins as endogenous photosensitisers. The dormant
M. smegmatis
were obtained under gradual acidification in Sauton’s medium, for 14 days. Cells were exposed to light with different wavelengths emitted by three Spectra X light-emitting diodes (395/25, 470/24, 575/25 nm) and one separated 634-nm LED for 15 min. An increase in the concentration of coproporphyrin in
M. smegmatis
after 6 days of growth correlated with the beginning of a decrease in metabolic activity and formation of ovoid dormant forms. Dormant bacteria were sensitive to PDI and killed after 15–30 min of illumination, in contrast to active cells. The greatest inactivation of dormant mycobacteria occurred at 395 and 575 nm, which coincides with the main maximum of the absorption spectrum of extracted porphyrins. We, for the first time, demonstrate a successful application of PDI for inactivation of dormant mycobacteria, due to significant accumulation of endogenous photosensitisers—porphyrins.</description><subject>Absorption spectra</subject><subject>Accumulation</subject><subject>Acidification</subject><subject>Applied Microbial and Cell Physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Culture Media - chemistry</subject><subject>Deactivation</subject><subject>Drug resistance in microorganisms</subject><subject>Inactivation</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Light-emitting diodes</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbial Sensitivity Tests</subject><subject>Microbial Viability - radiation effects</subject><subject>Microbiology</subject><subject>Mycobacterium smegmatis</subject><subject>Mycobacterium smegmatis - metabolism</subject><subject>Mycobacterium smegmatis - physiology</subject><subject>Mycobacterium smegmatis - radiation effects</subject><subject>Organic light emitting diodes</subject><subject>Photoinactivation</subject><subject>Photosensitizing Agents - metabolism</subject><subject>Porphyrins</subject><subject>Porphyrins - metabolism</subject><subject>Spectral emittance</subject><subject>Tuberculosis</subject><subject>Wavelengths</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kV9rFDEUxYModq1-AR9kwBd9mJpMZvLnsRSthYqi9jlkMnemKTvJmmSK--17162WFZFAAvf-zuHeHEJeMnrCKJXvMqVNx2vKdM3wkjV_RFas5U1NBWsfkxVlsqtlp9UReZbzDaWsUUI8JUecScaFpCty9eU6luiDdcXf2uJjqOJYDTHNNpTq09bFHluQ_DJXeYZpRiZXwwJViZUvuYIwxAlCXHK1iWlzvU0-5OfkyWjXGV7cv8fk6sP772cf68vP5xdnp5e16xgvNbdCK6saKZjuYZAc11C6763tRi17heO31HImpJWOubHloLRDpLN67G3Hj8mbve8mxR8L5GJmnx2s1zYATmQazlr8KSYVoq__Qm_ikgJOt6MEb6ii3QM12TUYH8ZYknU7U3MqqOBaC0GROvkHhWeA2bsYYPRYPxC8PRAgU-BnmeySs7n49vWQbfasSzHnBKPZJD_btDWMml3uZp-7wcjNr9wNR9Gr--2Wfobhj-R30AjwPZCxFSZID-v_x_YOqny14A</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Shleeva, Margarita O.</creator><creator>Savitsky, Alexander P.</creator><creator>Nikitushkin, Vadim D.</creator><creator>Solovyev, Iliya D.</creator><creator>Kazachkina, Nataliya I.</creator><creator>Perevarov, Vladimir V.</creator><creator>Kaprelyants, Arseny S.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7286-9336</orcidid></search><sort><creationdate>20191201</creationdate><title>Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins</title><author>Shleeva, Margarita O. ; Savitsky, Alexander P. ; Nikitushkin, Vadim D. ; Solovyev, Iliya D. ; Kazachkina, Nataliya I. ; Perevarov, Vladimir V. ; Kaprelyants, Arseny S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption spectra</topic><topic>Accumulation</topic><topic>Acidification</topic><topic>Applied Microbial and Cell Physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Culture Media - chemistry</topic><topic>Deactivation</topic><topic>Drug resistance in microorganisms</topic><topic>Inactivation</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Light-emitting diodes</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbial Sensitivity Tests</topic><topic>Microbial Viability - radiation effects</topic><topic>Microbiology</topic><topic>Mycobacterium smegmatis</topic><topic>Mycobacterium smegmatis - metabolism</topic><topic>Mycobacterium smegmatis - physiology</topic><topic>Mycobacterium smegmatis - radiation effects</topic><topic>Organic light emitting diodes</topic><topic>Photoinactivation</topic><topic>Photosensitizing Agents - metabolism</topic><topic>Porphyrins</topic><topic>Porphyrins - metabolism</topic><topic>Spectral emittance</topic><topic>Tuberculosis</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shleeva, Margarita O.</creatorcontrib><creatorcontrib>Savitsky, Alexander P.</creatorcontrib><creatorcontrib>Nikitushkin, Vadim D.</creatorcontrib><creatorcontrib>Solovyev, Iliya D.</creatorcontrib><creatorcontrib>Kazachkina, Nataliya I.</creatorcontrib><creatorcontrib>Perevarov, Vladimir V.</creatorcontrib><creatorcontrib>Kaprelyants, Arseny S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shleeva, Margarita O.</au><au>Savitsky, Alexander P.</au><au>Nikitushkin, Vadim D.</au><au>Solovyev, Iliya D.</au><au>Kazachkina, Nataliya I.</au><au>Perevarov, Vladimir V.</au><au>Kaprelyants, Arseny S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>103</volume><issue>23-24</issue><spage>9687</spage><epage>9695</epage><pages>9687-9695</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Mycobacterium tuberculosis
is able to transition into a dormant state, causing a latent state of tuberculosis. Dormant mycobacteria acquire phenotypic resistance to all known antibacterial drugs; they are also able to maintain vitality in the host for decades and become active, causing the active form of the disease. In order to cure latent tuberculosis, new approaches should be developed. Earlier, we discovered accumulation in significant concentrations of porphyrins in dormant
Mycobacterium smegmatis
, which is a close, fast-growing relative of the causative agent of tuberculosis. In this study, we explore a new possibility to kill dormant mycobacteria by photodynamic inactivation (PDI) using accumulated porphyrins as endogenous photosensitisers. The dormant
M. smegmatis
were obtained under gradual acidification in Sauton’s medium, for 14 days. Cells were exposed to light with different wavelengths emitted by three Spectra X light-emitting diodes (395/25, 470/24, 575/25 nm) and one separated 634-nm LED for 15 min. An increase in the concentration of coproporphyrin in
M. smegmatis
after 6 days of growth correlated with the beginning of a decrease in metabolic activity and formation of ovoid dormant forms. Dormant bacteria were sensitive to PDI and killed after 15–30 min of illumination, in contrast to active cells. The greatest inactivation of dormant mycobacteria occurred at 395 and 575 nm, which coincides with the main maximum of the absorption spectrum of extracted porphyrins. We, for the first time, demonstrate a successful application of PDI for inactivation of dormant mycobacteria, due to significant accumulation of endogenous photosensitisers—porphyrins.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31713670</pmid><doi>10.1007/s00253-019-10197-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7286-9336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2019-12, Vol.103 (23-24), p.9687-9695 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2314007178 |
source | ABI/INFORM global; Springer Nature |
subjects | Absorption spectra Accumulation Acidification Applied Microbial and Cell Physiology Biomedical and Life Sciences Biotechnology Culture Media - chemistry Deactivation Drug resistance in microorganisms Inactivation Life Sciences Light Light-emitting diodes Microbial Genetics and Genomics Microbial Sensitivity Tests Microbial Viability - radiation effects Microbiology Mycobacterium smegmatis Mycobacterium smegmatis - metabolism Mycobacterium smegmatis - physiology Mycobacterium smegmatis - radiation effects Organic light emitting diodes Photoinactivation Photosensitizing Agents - metabolism Porphyrins Porphyrins - metabolism Spectral emittance Tuberculosis Wavelengths |
title | Photoinactivation of dormant Mycobacterium smegmatis due to its endogenous porphyrins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoinactivation%20of%20dormant%20Mycobacterium%20smegmatis%20due%20to%20its%20endogenous%20porphyrins&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Shleeva,%20Margarita%20O.&rft.date=2019-12-01&rft.volume=103&rft.issue=23-24&rft.spage=9687&rft.epage=9695&rft.pages=9687-9695&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-019-10197-3&rft_dat=%3Cgale_proqu%3EA606399660%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-3a698a827619bed7310189bbaa5f97b817540a3167a7c1cf43e89c1895a9fba53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316320805&rft_id=info:pmid/31713670&rft_galeid=A606399660&rfr_iscdi=true |