Loading…
Drug resistance to targeted therapeutic strategies in non-small cell lung cancer
Rapidly developing molecular biology techniques have been employed to identify cancer driver genes in specimens from patients with non-small cell lung cancer (NSCLC). Inhibitors and antibodies that specifically target driver gene-mediated signaling pathways to suppress tumor growth and progression a...
Saved in:
Published in: | Pharmacology & therapeutics (Oxford) 2020-02, Vol.206, p.107438-107438, Article 107438 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rapidly developing molecular biology techniques have been employed to identify cancer driver genes in specimens from patients with non-small cell lung cancer (NSCLC). Inhibitors and antibodies that specifically target driver gene-mediated signaling pathways to suppress tumor growth and progression are expected to extend the survival time and further improve the quality of life of patients. However, the health of patients with advanced and metastatic NSCLC presents significant challenges due to treatment resistance, mediated by cancer driver gene alteration, epigenetic alteration, and tumor heterogeneity. In this review, we discuss two different resistance mechanisms in NSCLC targeted therapies, namely changes in the targeted oncogenes (on-target resistance) and changes in other related signaling pathways (off-target resistance) in tumor cells. We highlight the conventional mechanisms of drug resistance elicited by the complex heterogeneous microenvironment of NSCLC during targeted therapy, including mutations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), the receptor tyrosine kinase ROS proto-oncogene 1 (ROS1), and the serine/threonine-protein kinase BRAF (v-Raf murine sarcoma viral oncogene homolog B). We also discuss the mechanism of action of less common oncoproteins, as in-depth understanding of these molecular mechanisms is important for optimizing treatment strategies. |
---|---|
ISSN: | 0163-7258 1879-016X |
DOI: | 10.1016/j.pharmthera.2019.107438 |