Loading…

Room‐Temperature Synthesis of High‐Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication‐Based Method

In the present study, a sonochemical‐based method for one‐pot synthesis of entropy‐stabilized perovskite oxide nanoparticle catalysts with high surface area was developed. The high‐entropy perovskite oxides were synthesized as monodispersed, spherical nanoparticles with an average crystallite size o...

Full description

Saved in:
Bibliographic Details
Published in:ChemSusChem 2020-01, Vol.13 (1), p.111-115
Main Authors: Okejiri, Francis, Zhang, Zihao, Liu, Jixing, Liu, Miaomiao, Yang, Shize, Dai, Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, a sonochemical‐based method for one‐pot synthesis of entropy‐stabilized perovskite oxide nanoparticle catalysts with high surface area was developed. The high‐entropy perovskite oxides were synthesized as monodispersed, spherical nanoparticles with an average crystallite size of approximately 5.9 nm. Taking advantage of the acoustic cavitation phenomenon in the ultrasonication process, BaSr(ZrHfTi)O3, BaSrBi(ZrHfTiFe)O3 and Ru/BaSrBi(ZrHfTiFe)O3 nanoparticles were crystallized as single‐phase perovskite structures through ultrasonication exposure without calcination. Notably, the entropically‐driven stability of Ru/BaSrBi(ZrHfTiFe)O3 with excellent dispersion of Ru in the perovskite phase bestowed the nanoparticles of Ru/BaSrBi(ZrHfTiFe)O3 with good catalytic activity for CO oxidation. Make a sound: Taking advantage of the acoustic cavitation phenomenon in ultrasonication, BaSr(ZrHfTi)O3, BaSrBi(ZrHfTiFe)O3 and Ru/BaSrBi(ZrHfTiFe)O3 nanoparticles were crystallized as single‐phase perovskite structures through ultrasonication exposure without calcination.
ISSN:1864-5631
1864-564X
DOI:10.1002/cssc.201902705