Loading…

Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering

Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular biochemistry 2020-04, Vol.121 (4), p.2981-2993
Main Authors: Nazari, Hojjatollah, Heirani‐Tabasi, Asieh, Hajiabbas, Maryam, Salimi Bani, Milad, Nazari, Mahnaz, Pirhajati Mahabadi, Vahid, Rad, Iman, Kehtari, Mousa, Ahmadi Tafti, Seyed Hossein, Soleimani, Masoud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423
cites cdi_FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423
container_end_page 2993
container_issue 4
container_start_page 2981
container_title Journal of cellular biochemistry
container_volume 121
creator Nazari, Hojjatollah
Heirani‐Tabasi, Asieh
Hajiabbas, Maryam
Salimi Bani, Milad
Nazari, Mahnaz
Pirhajati Mahabadi, Vahid
Rad, Iman
Kehtari, Mousa
Ahmadi Tafti, Seyed Hossein
Soleimani, Masoud
description Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk‐fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X‐ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real‐time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION‐casein scaffolds including GATA‐4, cardiac troponin T, Nkx 2.5, and alpha‐myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core‐shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self‐renewal capacity. The schematic representation demonstrates the synthesis and incorporation of superparamagnetic iron oxide nanoparticles/casein into silk nanofibers, culture, and seeding of embryonic cardiac cells onto the scaffolds. (Abbreviation: CPC cardiac progenitor cell)
doi_str_mv 10.1002/jcb.29553
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314571504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314571504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423</originalsourceid><addsrcrecordid>eNp1kc1OGzEQxy0EgpT2wAsgS1zKYWH8tZs90gjaINRUanteeb1jcNjYwc4K5dZH6DPyJDUkcEDqab5--mtm_oQcMThjAPx8btozXisldsiIQV0VspRyl4ygElBwwfgB-ZDSHADqWvB9ciBYxSUXckTup96EuAxRr1zwNFj688d09v3pz1-jEzpP8xRzle6w7xN1fhVocv19blnXxpAJr33IOcZEbYjU6Ng5bejKpTQgRX_rPGJ0_vYj2bO6T_hpGw_J76vLX5Nvxc3s63RycVMYoYQoylZW2Ck9trasGSJIK8tSSNDKaG1yDYyVquVd23aagSgZE9waIYWVkM86JJ83ussYHgZMq2bhksn7a49hSE3-iFQVUyAzevIOnYch-rxdpkoF9VixcaZON5SJIaWItllGt9Bx3TBonh1osgPNiwOZPd4qDu0Cuzfy9eUZON8Aj67H9f-VmuvJl43kPz3Gkm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365098518</pqid></control><display><type>article</type><title>Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering</title><source>Wiley</source><creator>Nazari, Hojjatollah ; Heirani‐Tabasi, Asieh ; Hajiabbas, Maryam ; Salimi Bani, Milad ; Nazari, Mahnaz ; Pirhajati Mahabadi, Vahid ; Rad, Iman ; Kehtari, Mousa ; Ahmadi Tafti, Seyed Hossein ; Soleimani, Masoud</creator><creatorcontrib>Nazari, Hojjatollah ; Heirani‐Tabasi, Asieh ; Hajiabbas, Maryam ; Salimi Bani, Milad ; Nazari, Mahnaz ; Pirhajati Mahabadi, Vahid ; Rad, Iman ; Kehtari, Mousa ; Ahmadi Tafti, Seyed Hossein ; Soleimani, Masoud</creatorcontrib><description>Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk‐fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X‐ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real‐time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION‐casein scaffolds including GATA‐4, cardiac troponin T, Nkx 2.5, and alpha‐myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core‐shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self‐renewal capacity. The schematic representation demonstrates the synthesis and incorporation of superparamagnetic iron oxide nanoparticles/casein into silk nanofibers, culture, and seeding of embryonic cardiac cells onto the scaffolds. (Abbreviation: CPC cardiac progenitor cell)</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.29553</identifier><identifier>PMID: 31724234</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Calcium-binding protein ; cardiac scaffolds ; Casein ; Cell self-renewal ; Contact angle ; Electron microscopes ; electrospinning ; Extracellular matrix ; Fabrication ; Heart ; Incorporation ; Iron oxides ; Mechanical properties ; Mimicry ; Morphology ; Myocardium ; Myosin ; Nanofibers ; Nanoparticles ; Scaffolds ; Scanning electron microscopy ; Shells ; Silk ; silk‐fibroin ; SPION ; Tensile tests ; Tissue engineering ; Transmission electron microscopy ; Troponin ; Troponin T ; Ultrasonic testing</subject><ispartof>Journal of cellular biochemistry, 2020-04, Vol.121 (4), p.2981-2993</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423</citedby><cites>FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423</cites><orcidid>0000-0002-9315-2809 ; 0000-0003-4296-7757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31724234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nazari, Hojjatollah</creatorcontrib><creatorcontrib>Heirani‐Tabasi, Asieh</creatorcontrib><creatorcontrib>Hajiabbas, Maryam</creatorcontrib><creatorcontrib>Salimi Bani, Milad</creatorcontrib><creatorcontrib>Nazari, Mahnaz</creatorcontrib><creatorcontrib>Pirhajati Mahabadi, Vahid</creatorcontrib><creatorcontrib>Rad, Iman</creatorcontrib><creatorcontrib>Kehtari, Mousa</creatorcontrib><creatorcontrib>Ahmadi Tafti, Seyed Hossein</creatorcontrib><creatorcontrib>Soleimani, Masoud</creatorcontrib><title>Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering</title><title>Journal of cellular biochemistry</title><addtitle>J Cell Biochem</addtitle><description>Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk‐fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X‐ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real‐time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION‐casein scaffolds including GATA‐4, cardiac troponin T, Nkx 2.5, and alpha‐myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core‐shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self‐renewal capacity. The schematic representation demonstrates the synthesis and incorporation of superparamagnetic iron oxide nanoparticles/casein into silk nanofibers, culture, and seeding of embryonic cardiac cells onto the scaffolds. (Abbreviation: CPC cardiac progenitor cell)</description><subject>Biocompatibility</subject><subject>Calcium-binding protein</subject><subject>cardiac scaffolds</subject><subject>Casein</subject><subject>Cell self-renewal</subject><subject>Contact angle</subject><subject>Electron microscopes</subject><subject>electrospinning</subject><subject>Extracellular matrix</subject><subject>Fabrication</subject><subject>Heart</subject><subject>Incorporation</subject><subject>Iron oxides</subject><subject>Mechanical properties</subject><subject>Mimicry</subject><subject>Morphology</subject><subject>Myocardium</subject><subject>Myosin</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Shells</subject><subject>Silk</subject><subject>silk‐fibroin</subject><subject>SPION</subject><subject>Tensile tests</subject><subject>Tissue engineering</subject><subject>Transmission electron microscopy</subject><subject>Troponin</subject><subject>Troponin T</subject><subject>Ultrasonic testing</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1OGzEQxy0EgpT2wAsgS1zKYWH8tZs90gjaINRUanteeb1jcNjYwc4K5dZH6DPyJDUkcEDqab5--mtm_oQcMThjAPx8btozXisldsiIQV0VspRyl4ygElBwwfgB-ZDSHADqWvB9ciBYxSUXckTup96EuAxRr1zwNFj688d09v3pz1-jEzpP8xRzle6w7xN1fhVocv19blnXxpAJr33IOcZEbYjU6Ng5bejKpTQgRX_rPGJ0_vYj2bO6T_hpGw_J76vLX5Nvxc3s63RycVMYoYQoylZW2Ck9trasGSJIK8tSSNDKaG1yDYyVquVd23aagSgZE9waIYWVkM86JJ83ussYHgZMq2bhksn7a49hSE3-iFQVUyAzevIOnYch-rxdpkoF9VixcaZON5SJIaWItllGt9Bx3TBonh1osgPNiwOZPd4qDu0Cuzfy9eUZON8Aj67H9f-VmuvJl43kPz3Gkm4</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Nazari, Hojjatollah</creator><creator>Heirani‐Tabasi, Asieh</creator><creator>Hajiabbas, Maryam</creator><creator>Salimi Bani, Milad</creator><creator>Nazari, Mahnaz</creator><creator>Pirhajati Mahabadi, Vahid</creator><creator>Rad, Iman</creator><creator>Kehtari, Mousa</creator><creator>Ahmadi Tafti, Seyed Hossein</creator><creator>Soleimani, Masoud</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9315-2809</orcidid><orcidid>https://orcid.org/0000-0003-4296-7757</orcidid></search><sort><creationdate>202004</creationdate><title>Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering</title><author>Nazari, Hojjatollah ; Heirani‐Tabasi, Asieh ; Hajiabbas, Maryam ; Salimi Bani, Milad ; Nazari, Mahnaz ; Pirhajati Mahabadi, Vahid ; Rad, Iman ; Kehtari, Mousa ; Ahmadi Tafti, Seyed Hossein ; Soleimani, Masoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Calcium-binding protein</topic><topic>cardiac scaffolds</topic><topic>Casein</topic><topic>Cell self-renewal</topic><topic>Contact angle</topic><topic>Electron microscopes</topic><topic>electrospinning</topic><topic>Extracellular matrix</topic><topic>Fabrication</topic><topic>Heart</topic><topic>Incorporation</topic><topic>Iron oxides</topic><topic>Mechanical properties</topic><topic>Mimicry</topic><topic>Morphology</topic><topic>Myocardium</topic><topic>Myosin</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Shells</topic><topic>Silk</topic><topic>silk‐fibroin</topic><topic>SPION</topic><topic>Tensile tests</topic><topic>Tissue engineering</topic><topic>Transmission electron microscopy</topic><topic>Troponin</topic><topic>Troponin T</topic><topic>Ultrasonic testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazari, Hojjatollah</creatorcontrib><creatorcontrib>Heirani‐Tabasi, Asieh</creatorcontrib><creatorcontrib>Hajiabbas, Maryam</creatorcontrib><creatorcontrib>Salimi Bani, Milad</creatorcontrib><creatorcontrib>Nazari, Mahnaz</creatorcontrib><creatorcontrib>Pirhajati Mahabadi, Vahid</creatorcontrib><creatorcontrib>Rad, Iman</creatorcontrib><creatorcontrib>Kehtari, Mousa</creatorcontrib><creatorcontrib>Ahmadi Tafti, Seyed Hossein</creatorcontrib><creatorcontrib>Soleimani, Masoud</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazari, Hojjatollah</au><au>Heirani‐Tabasi, Asieh</au><au>Hajiabbas, Maryam</au><au>Salimi Bani, Milad</au><au>Nazari, Mahnaz</au><au>Pirhajati Mahabadi, Vahid</au><au>Rad, Iman</au><au>Kehtari, Mousa</au><au>Ahmadi Tafti, Seyed Hossein</au><au>Soleimani, Masoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J Cell Biochem</addtitle><date>2020-04</date><risdate>2020</risdate><volume>121</volume><issue>4</issue><spage>2981</spage><epage>2993</epage><pages>2981-2993</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk‐fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X‐ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real‐time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION‐casein scaffolds including GATA‐4, cardiac troponin T, Nkx 2.5, and alpha‐myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core‐shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self‐renewal capacity. The schematic representation demonstrates the synthesis and incorporation of superparamagnetic iron oxide nanoparticles/casein into silk nanofibers, culture, and seeding of embryonic cardiac cells onto the scaffolds. (Abbreviation: CPC cardiac progenitor cell)</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31724234</pmid><doi>10.1002/jcb.29553</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9315-2809</orcidid><orcidid>https://orcid.org/0000-0003-4296-7757</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0730-2312
ispartof Journal of cellular biochemistry, 2020-04, Vol.121 (4), p.2981-2993
issn 0730-2312
1097-4644
language eng
recordid cdi_proquest_miscellaneous_2314571504
source Wiley
subjects Biocompatibility
Calcium-binding protein
cardiac scaffolds
Casein
Cell self-renewal
Contact angle
Electron microscopes
electrospinning
Extracellular matrix
Fabrication
Heart
Incorporation
Iron oxides
Mechanical properties
Mimicry
Morphology
Myocardium
Myosin
Nanofibers
Nanoparticles
Scaffolds
Scanning electron microscopy
Shells
Silk
silk‐fibroin
SPION
Tensile tests
Tissue engineering
Transmission electron microscopy
Troponin
Troponin T
Ultrasonic testing
title Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20SPION%E2%80%90casein%20core%E2%80%90shells%20into%20silk%E2%80%90fibroin%20nanofibers%20for%20cardiac%20tissue%20engineering&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Nazari,%20Hojjatollah&rft.date=2020-04&rft.volume=121&rft.issue=4&rft.spage=2981&rft.epage=2993&rft.pages=2981-2993&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.29553&rft_dat=%3Cproquest_cross%3E2314571504%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365098518&rft_id=info:pmid/31724234&rfr_iscdi=true