Loading…
Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering
Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs...
Saved in:
Published in: | Journal of cellular biochemistry 2020-04, Vol.121 (4), p.2981-2993 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423 |
---|---|
cites | cdi_FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423 |
container_end_page | 2993 |
container_issue | 4 |
container_start_page | 2981 |
container_title | Journal of cellular biochemistry |
container_volume | 121 |
creator | Nazari, Hojjatollah Heirani‐Tabasi, Asieh Hajiabbas, Maryam Salimi Bani, Milad Nazari, Mahnaz Pirhajati Mahabadi, Vahid Rad, Iman Kehtari, Mousa Ahmadi Tafti, Seyed Hossein Soleimani, Masoud |
description | Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk‐fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X‐ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real‐time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION‐casein scaffolds including GATA‐4, cardiac troponin T, Nkx 2.5, and alpha‐myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core‐shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self‐renewal capacity.
The schematic representation demonstrates the synthesis and incorporation of superparamagnetic iron oxide nanoparticles/casein into silk nanofibers, culture, and seeding of embryonic cardiac cells onto the scaffolds. (Abbreviation: CPC cardiac progenitor cell) |
doi_str_mv | 10.1002/jcb.29553 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2314571504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314571504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423</originalsourceid><addsrcrecordid>eNp1kc1OGzEQxy0EgpT2wAsgS1zKYWH8tZs90gjaINRUanteeb1jcNjYwc4K5dZH6DPyJDUkcEDqab5--mtm_oQcMThjAPx8btozXisldsiIQV0VspRyl4ygElBwwfgB-ZDSHADqWvB9ciBYxSUXckTup96EuAxRr1zwNFj688d09v3pz1-jEzpP8xRzle6w7xN1fhVocv19blnXxpAJr33IOcZEbYjU6Ng5bejKpTQgRX_rPGJ0_vYj2bO6T_hpGw_J76vLX5Nvxc3s63RycVMYoYQoylZW2Ck9trasGSJIK8tSSNDKaG1yDYyVquVd23aagSgZE9waIYWVkM86JJ83ussYHgZMq2bhksn7a49hSE3-iFQVUyAzevIOnYch-rxdpkoF9VixcaZON5SJIaWItllGt9Bx3TBonh1osgPNiwOZPd4qDu0Cuzfy9eUZON8Aj67H9f-VmuvJl43kPz3Gkm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365098518</pqid></control><display><type>article</type><title>Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering</title><source>Wiley</source><creator>Nazari, Hojjatollah ; Heirani‐Tabasi, Asieh ; Hajiabbas, Maryam ; Salimi Bani, Milad ; Nazari, Mahnaz ; Pirhajati Mahabadi, Vahid ; Rad, Iman ; Kehtari, Mousa ; Ahmadi Tafti, Seyed Hossein ; Soleimani, Masoud</creator><creatorcontrib>Nazari, Hojjatollah ; Heirani‐Tabasi, Asieh ; Hajiabbas, Maryam ; Salimi Bani, Milad ; Nazari, Mahnaz ; Pirhajati Mahabadi, Vahid ; Rad, Iman ; Kehtari, Mousa ; Ahmadi Tafti, Seyed Hossein ; Soleimani, Masoud</creatorcontrib><description>Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk‐fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X‐ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real‐time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION‐casein scaffolds including GATA‐4, cardiac troponin T, Nkx 2.5, and alpha‐myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core‐shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self‐renewal capacity.
The schematic representation demonstrates the synthesis and incorporation of superparamagnetic iron oxide nanoparticles/casein into silk nanofibers, culture, and seeding of embryonic cardiac cells onto the scaffolds. (Abbreviation: CPC cardiac progenitor cell)</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.29553</identifier><identifier>PMID: 31724234</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Calcium-binding protein ; cardiac scaffolds ; Casein ; Cell self-renewal ; Contact angle ; Electron microscopes ; electrospinning ; Extracellular matrix ; Fabrication ; Heart ; Incorporation ; Iron oxides ; Mechanical properties ; Mimicry ; Morphology ; Myocardium ; Myosin ; Nanofibers ; Nanoparticles ; Scaffolds ; Scanning electron microscopy ; Shells ; Silk ; silk‐fibroin ; SPION ; Tensile tests ; Tissue engineering ; Transmission electron microscopy ; Troponin ; Troponin T ; Ultrasonic testing</subject><ispartof>Journal of cellular biochemistry, 2020-04, Vol.121 (4), p.2981-2993</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423</citedby><cites>FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423</cites><orcidid>0000-0002-9315-2809 ; 0000-0003-4296-7757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31724234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nazari, Hojjatollah</creatorcontrib><creatorcontrib>Heirani‐Tabasi, Asieh</creatorcontrib><creatorcontrib>Hajiabbas, Maryam</creatorcontrib><creatorcontrib>Salimi Bani, Milad</creatorcontrib><creatorcontrib>Nazari, Mahnaz</creatorcontrib><creatorcontrib>Pirhajati Mahabadi, Vahid</creatorcontrib><creatorcontrib>Rad, Iman</creatorcontrib><creatorcontrib>Kehtari, Mousa</creatorcontrib><creatorcontrib>Ahmadi Tafti, Seyed Hossein</creatorcontrib><creatorcontrib>Soleimani, Masoud</creatorcontrib><title>Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering</title><title>Journal of cellular biochemistry</title><addtitle>J Cell Biochem</addtitle><description>Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk‐fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X‐ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real‐time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION‐casein scaffolds including GATA‐4, cardiac troponin T, Nkx 2.5, and alpha‐myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core‐shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self‐renewal capacity.
The schematic representation demonstrates the synthesis and incorporation of superparamagnetic iron oxide nanoparticles/casein into silk nanofibers, culture, and seeding of embryonic cardiac cells onto the scaffolds. (Abbreviation: CPC cardiac progenitor cell)</description><subject>Biocompatibility</subject><subject>Calcium-binding protein</subject><subject>cardiac scaffolds</subject><subject>Casein</subject><subject>Cell self-renewal</subject><subject>Contact angle</subject><subject>Electron microscopes</subject><subject>electrospinning</subject><subject>Extracellular matrix</subject><subject>Fabrication</subject><subject>Heart</subject><subject>Incorporation</subject><subject>Iron oxides</subject><subject>Mechanical properties</subject><subject>Mimicry</subject><subject>Morphology</subject><subject>Myocardium</subject><subject>Myosin</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Shells</subject><subject>Silk</subject><subject>silk‐fibroin</subject><subject>SPION</subject><subject>Tensile tests</subject><subject>Tissue engineering</subject><subject>Transmission electron microscopy</subject><subject>Troponin</subject><subject>Troponin T</subject><subject>Ultrasonic testing</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1OGzEQxy0EgpT2wAsgS1zKYWH8tZs90gjaINRUanteeb1jcNjYwc4K5dZH6DPyJDUkcEDqab5--mtm_oQcMThjAPx8btozXisldsiIQV0VspRyl4ygElBwwfgB-ZDSHADqWvB9ciBYxSUXckTup96EuAxRr1zwNFj688d09v3pz1-jEzpP8xRzle6w7xN1fhVocv19blnXxpAJr33IOcZEbYjU6Ng5bejKpTQgRX_rPGJ0_vYj2bO6T_hpGw_J76vLX5Nvxc3s63RycVMYoYQoylZW2Ck9trasGSJIK8tSSNDKaG1yDYyVquVd23aagSgZE9waIYWVkM86JJ83ussYHgZMq2bhksn7a49hSE3-iFQVUyAzevIOnYch-rxdpkoF9VixcaZON5SJIaWItllGt9Bx3TBonh1osgPNiwOZPd4qDu0Cuzfy9eUZON8Aj67H9f-VmuvJl43kPz3Gkm4</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Nazari, Hojjatollah</creator><creator>Heirani‐Tabasi, Asieh</creator><creator>Hajiabbas, Maryam</creator><creator>Salimi Bani, Milad</creator><creator>Nazari, Mahnaz</creator><creator>Pirhajati Mahabadi, Vahid</creator><creator>Rad, Iman</creator><creator>Kehtari, Mousa</creator><creator>Ahmadi Tafti, Seyed Hossein</creator><creator>Soleimani, Masoud</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9315-2809</orcidid><orcidid>https://orcid.org/0000-0003-4296-7757</orcidid></search><sort><creationdate>202004</creationdate><title>Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering</title><author>Nazari, Hojjatollah ; Heirani‐Tabasi, Asieh ; Hajiabbas, Maryam ; Salimi Bani, Milad ; Nazari, Mahnaz ; Pirhajati Mahabadi, Vahid ; Rad, Iman ; Kehtari, Mousa ; Ahmadi Tafti, Seyed Hossein ; Soleimani, Masoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Calcium-binding protein</topic><topic>cardiac scaffolds</topic><topic>Casein</topic><topic>Cell self-renewal</topic><topic>Contact angle</topic><topic>Electron microscopes</topic><topic>electrospinning</topic><topic>Extracellular matrix</topic><topic>Fabrication</topic><topic>Heart</topic><topic>Incorporation</topic><topic>Iron oxides</topic><topic>Mechanical properties</topic><topic>Mimicry</topic><topic>Morphology</topic><topic>Myocardium</topic><topic>Myosin</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Shells</topic><topic>Silk</topic><topic>silk‐fibroin</topic><topic>SPION</topic><topic>Tensile tests</topic><topic>Tissue engineering</topic><topic>Transmission electron microscopy</topic><topic>Troponin</topic><topic>Troponin T</topic><topic>Ultrasonic testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazari, Hojjatollah</creatorcontrib><creatorcontrib>Heirani‐Tabasi, Asieh</creatorcontrib><creatorcontrib>Hajiabbas, Maryam</creatorcontrib><creatorcontrib>Salimi Bani, Milad</creatorcontrib><creatorcontrib>Nazari, Mahnaz</creatorcontrib><creatorcontrib>Pirhajati Mahabadi, Vahid</creatorcontrib><creatorcontrib>Rad, Iman</creatorcontrib><creatorcontrib>Kehtari, Mousa</creatorcontrib><creatorcontrib>Ahmadi Tafti, Seyed Hossein</creatorcontrib><creatorcontrib>Soleimani, Masoud</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazari, Hojjatollah</au><au>Heirani‐Tabasi, Asieh</au><au>Hajiabbas, Maryam</au><au>Salimi Bani, Milad</au><au>Nazari, Mahnaz</au><au>Pirhajati Mahabadi, Vahid</au><au>Rad, Iman</au><au>Kehtari, Mousa</au><au>Ahmadi Tafti, Seyed Hossein</au><au>Soleimani, Masoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J Cell Biochem</addtitle><date>2020-04</date><risdate>2020</risdate><volume>121</volume><issue>4</issue><spage>2981</spage><epage>2993</epage><pages>2981-2993</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk‐fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X‐ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real‐time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION‐casein scaffolds including GATA‐4, cardiac troponin T, Nkx 2.5, and alpha‐myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core‐shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self‐renewal capacity.
The schematic representation demonstrates the synthesis and incorporation of superparamagnetic iron oxide nanoparticles/casein into silk nanofibers, culture, and seeding of embryonic cardiac cells onto the scaffolds. (Abbreviation: CPC cardiac progenitor cell)</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31724234</pmid><doi>10.1002/jcb.29553</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9315-2809</orcidid><orcidid>https://orcid.org/0000-0003-4296-7757</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-2312 |
ispartof | Journal of cellular biochemistry, 2020-04, Vol.121 (4), p.2981-2993 |
issn | 0730-2312 1097-4644 |
language | eng |
recordid | cdi_proquest_miscellaneous_2314571504 |
source | Wiley |
subjects | Biocompatibility Calcium-binding protein cardiac scaffolds Casein Cell self-renewal Contact angle Electron microscopes electrospinning Extracellular matrix Fabrication Heart Incorporation Iron oxides Mechanical properties Mimicry Morphology Myocardium Myosin Nanofibers Nanoparticles Scaffolds Scanning electron microscopy Shells Silk silk‐fibroin SPION Tensile tests Tissue engineering Transmission electron microscopy Troponin Troponin T Ultrasonic testing |
title | Incorporation of SPION‐casein core‐shells into silk‐fibroin nanofibers for cardiac tissue engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20SPION%E2%80%90casein%20core%E2%80%90shells%20into%20silk%E2%80%90fibroin%20nanofibers%20for%20cardiac%20tissue%20engineering&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Nazari,%20Hojjatollah&rft.date=2020-04&rft.volume=121&rft.issue=4&rft.spage=2981&rft.epage=2993&rft.pages=2981-2993&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.29553&rft_dat=%3Cproquest_cross%3E2314571504%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3533-6b47ed5a8ff691ee04f466340a5caace0401165b2dbbda10361132fc343f40423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365098518&rft_id=info:pmid/31724234&rfr_iscdi=true |