Loading…

Whole‐Liver Apparent Diffusion Coefficient Histogram Analysis for the Diagnosis and Staging of Liver Fibrosis

Background Conventional diffusion‐weighted imaging is limited in the quantitative evaluation of liver fibrosis, and whole‐liver apparent diffusion coefficient (ADC) histogram analysis might contribute to the diagnosis and staging of liver fibrosis. Purpose To explore the value of whole‐liver ADC his...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging 2020-06, Vol.51 (6), p.1745-1754
Main Authors: Zheng, You, Xu, Yong‐Sheng, Liu, Zhao, Liu, Hai‐Feng, Zhai, Ya‐Nan, Mao, Xiao‐Rong, Lei, Jun‐Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3577-fd81a055fc9153e30c19535544ff3b358f06a9ef9922b29acb4ff089fc3fc5123
cites cdi_FETCH-LOGICAL-c3577-fd81a055fc9153e30c19535544ff3b358f06a9ef9922b29acb4ff089fc3fc5123
container_end_page 1754
container_issue 6
container_start_page 1745
container_title Journal of magnetic resonance imaging
container_volume 51
creator Zheng, You
Xu, Yong‐Sheng
Liu, Zhao
Liu, Hai‐Feng
Zhai, Ya‐Nan
Mao, Xiao‐Rong
Lei, Jun‐Qiang
description Background Conventional diffusion‐weighted imaging is limited in the quantitative evaluation of liver fibrosis, and whole‐liver apparent diffusion coefficient (ADC) histogram analysis might contribute to the diagnosis and staging of liver fibrosis. Purpose To explore the value of whole‐liver ADC histogram parameters in the diagnosis and staging of liver fibrosis. Study Type Retrospective. Population Twenty individuals with no liver disease and 86 patients with liver fibrosis, including 30 with chronic viral hepatitis, 29 with autoimmune hepatitis, and 27 with unexplained liver fibrosis patients. Field Strength/Sequence 3.0T/T1‐weighted, T2‐weighted, and diffusion‐weighted images. Assessment A region of interest (ROI) was drawn in each slice of the diffusion‐weighted images. Whole‐liver histogram parameters were obtained with dedicated software by accumulating all ROIs. The effectiveness of the parameters in differentiating stage 1 or greater (≥F1), stage 2 or greater (≥F2), and stage 3 or greater (≥F3) liver fibrosis was assessed. Statistical Tests Mann–Whitney U‐test and receiver operating characteristic curve analysis. Results Kurtosis, entropy, skewness, mode, and 90th and 75th percentiles exhibited significant differences among the pathological fibrosis stages (P 
doi_str_mv 10.1002/jmri.26987
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315088806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401718458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-fd81a055fc9153e30c19535544ff3b358f06a9ef9922b29acb4ff089fc3fc5123</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMo3jc-gATciFDNpZkmy2F0vDAieMFlSTPJmKFtxqRVZucj-Iw-ialVFy5cnXDOdz44-QHYw-gYI0RO5pW3x2QgeLYCNjEjJCGMD1bjGzGaYI6yDbAVwhwhJETK1sEGxRkRHONN4B6fXKk_3t4n9kV7OFwspNd1A0-tMW2wroYjp42xynbdCxsaN_OygsNalstgAzTOw-ZJxwU5q13XkfUU3jVyZusZdAb24rEtfDfdAWtGlkHvftdt8DA-ux9dJJOb88vRcJIoyrIsMVOOJWLMKIEZ1RQpLBhlLE2NoQVl3KCBFNoIQUhBhFRFHCAujKJGMUzoNjjsvQvvnlsdmryyQemylLV2bcgJxQxxztEgogd_0LlrfbwvUinCGeYp45E66ikV7whem3zhbSX9Msco72LIuxjyrxgivP-tbItKT3_Rn3-PAO6BV1vq5T-q_Or69rKXfgJa6pOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401718458</pqid></control><display><type>article</type><title>Whole‐Liver Apparent Diffusion Coefficient Histogram Analysis for the Diagnosis and Staging of Liver Fibrosis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zheng, You ; Xu, Yong‐Sheng ; Liu, Zhao ; Liu, Hai‐Feng ; Zhai, Ya‐Nan ; Mao, Xiao‐Rong ; Lei, Jun‐Qiang</creator><creatorcontrib>Zheng, You ; Xu, Yong‐Sheng ; Liu, Zhao ; Liu, Hai‐Feng ; Zhai, Ya‐Nan ; Mao, Xiao‐Rong ; Lei, Jun‐Qiang</creatorcontrib><description>Background Conventional diffusion‐weighted imaging is limited in the quantitative evaluation of liver fibrosis, and whole‐liver apparent diffusion coefficient (ADC) histogram analysis might contribute to the diagnosis and staging of liver fibrosis. Purpose To explore the value of whole‐liver ADC histogram parameters in the diagnosis and staging of liver fibrosis. Study Type Retrospective. Population Twenty individuals with no liver disease and 86 patients with liver fibrosis, including 30 with chronic viral hepatitis, 29 with autoimmune hepatitis, and 27 with unexplained liver fibrosis patients. Field Strength/Sequence 3.0T/T1‐weighted, T2‐weighted, and diffusion‐weighted images. Assessment A region of interest (ROI) was drawn in each slice of the diffusion‐weighted images. Whole‐liver histogram parameters were obtained with dedicated software by accumulating all ROIs. The effectiveness of the parameters in differentiating stage 1 or greater (≥F1), stage 2 or greater (≥F2), and stage 3 or greater (≥F3) liver fibrosis was assessed. Statistical Tests Mann–Whitney U‐test and receiver operating characteristic curve analysis. Results Kurtosis, entropy, skewness, mode, and 90th and 75th percentiles exhibited significant differences among the pathological fibrosis stages (P &lt; 0.05). Kurtosis was found to be the most meaningful parameter in differentiating fibrosis stages of the viral hepatitis, autoimmune hepatitis, and unexplained liver fibrosis group (area under the curve) (AUC = 0.793, 0.771, 0.798, respectively). In the combined liver fibrosis group, kurtosis achieved the highest AUC (0.801; 95% confidence interval [CI]: 0.702–0.900; sensitivity: 0.750; specificity: 0.850; positive likelihood ratio: 4.953; negative likelihood ratio: 0.302; positive predictive value: 0.946; negative predictive value: 0.486), with a cutoff value of 1.817, in differentiating fibrosis stage ≥F1. Data Conclusion Kurtosis, entropy, skewness, mode, and 90th and 75th percentiles may contribute to the diagnosis and staging of liver fibrosis, especially kurtosis. Level of Evidence: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:1745–1754.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26987</identifier><identifier>PMID: 31729811</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>apparent diffusion coefficient ; Bile ; Confidence intervals ; Diagnosis ; Diffusion ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging ; Entropy ; Fibrosis ; Field strength ; Hepatitis ; histogram ; Histograms ; Humans ; Image Interpretation, Computer-Assisted ; Image processing ; Kurtosis ; Likelihood ratio ; Liver ; Liver Cirrhosis - diagnostic imaging ; Liver diseases ; liver fibrosis ; Magnetic resonance imaging ; Medical imaging ; Parameters ; Population studies ; Retrospective Studies ; ROC Curve ; Sensitivity and Specificity ; Skewness ; Statistical analysis ; Statistical tests</subject><ispartof>Journal of magnetic resonance imaging, 2020-06, Vol.51 (6), p.1745-1754</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><rights>2020 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-fd81a055fc9153e30c19535544ff3b358f06a9ef9922b29acb4ff089fc3fc5123</citedby><cites>FETCH-LOGICAL-c3577-fd81a055fc9153e30c19535544ff3b358f06a9ef9922b29acb4ff089fc3fc5123</cites><orcidid>0000-0002-3259-2253 ; 0000-0002-5348-6943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31729811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, You</creatorcontrib><creatorcontrib>Xu, Yong‐Sheng</creatorcontrib><creatorcontrib>Liu, Zhao</creatorcontrib><creatorcontrib>Liu, Hai‐Feng</creatorcontrib><creatorcontrib>Zhai, Ya‐Nan</creatorcontrib><creatorcontrib>Mao, Xiao‐Rong</creatorcontrib><creatorcontrib>Lei, Jun‐Qiang</creatorcontrib><title>Whole‐Liver Apparent Diffusion Coefficient Histogram Analysis for the Diagnosis and Staging of Liver Fibrosis</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Conventional diffusion‐weighted imaging is limited in the quantitative evaluation of liver fibrosis, and whole‐liver apparent diffusion coefficient (ADC) histogram analysis might contribute to the diagnosis and staging of liver fibrosis. Purpose To explore the value of whole‐liver ADC histogram parameters in the diagnosis and staging of liver fibrosis. Study Type Retrospective. Population Twenty individuals with no liver disease and 86 patients with liver fibrosis, including 30 with chronic viral hepatitis, 29 with autoimmune hepatitis, and 27 with unexplained liver fibrosis patients. Field Strength/Sequence 3.0T/T1‐weighted, T2‐weighted, and diffusion‐weighted images. Assessment A region of interest (ROI) was drawn in each slice of the diffusion‐weighted images. Whole‐liver histogram parameters were obtained with dedicated software by accumulating all ROIs. The effectiveness of the parameters in differentiating stage 1 or greater (≥F1), stage 2 or greater (≥F2), and stage 3 or greater (≥F3) liver fibrosis was assessed. Statistical Tests Mann–Whitney U‐test and receiver operating characteristic curve analysis. Results Kurtosis, entropy, skewness, mode, and 90th and 75th percentiles exhibited significant differences among the pathological fibrosis stages (P &lt; 0.05). Kurtosis was found to be the most meaningful parameter in differentiating fibrosis stages of the viral hepatitis, autoimmune hepatitis, and unexplained liver fibrosis group (area under the curve) (AUC = 0.793, 0.771, 0.798, respectively). In the combined liver fibrosis group, kurtosis achieved the highest AUC (0.801; 95% confidence interval [CI]: 0.702–0.900; sensitivity: 0.750; specificity: 0.850; positive likelihood ratio: 4.953; negative likelihood ratio: 0.302; positive predictive value: 0.946; negative predictive value: 0.486), with a cutoff value of 1.817, in differentiating fibrosis stage ≥F1. Data Conclusion Kurtosis, entropy, skewness, mode, and 90th and 75th percentiles may contribute to the diagnosis and staging of liver fibrosis, especially kurtosis. Level of Evidence: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:1745–1754.</description><subject>apparent diffusion coefficient</subject><subject>Bile</subject><subject>Confidence intervals</subject><subject>Diagnosis</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Entropy</subject><subject>Fibrosis</subject><subject>Field strength</subject><subject>Hepatitis</subject><subject>histogram</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image processing</subject><subject>Kurtosis</subject><subject>Likelihood ratio</subject><subject>Liver</subject><subject>Liver Cirrhosis - diagnostic imaging</subject><subject>Liver diseases</subject><subject>liver fibrosis</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Parameters</subject><subject>Population studies</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Skewness</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctKxDAUhoMo3jc-gATciFDNpZkmy2F0vDAieMFlSTPJmKFtxqRVZucj-Iw-ialVFy5cnXDOdz44-QHYw-gYI0RO5pW3x2QgeLYCNjEjJCGMD1bjGzGaYI6yDbAVwhwhJETK1sEGxRkRHONN4B6fXKk_3t4n9kV7OFwspNd1A0-tMW2wroYjp42xynbdCxsaN_OygsNalstgAzTOw-ZJxwU5q13XkfUU3jVyZusZdAb24rEtfDfdAWtGlkHvftdt8DA-ux9dJJOb88vRcJIoyrIsMVOOJWLMKIEZ1RQpLBhlLE2NoQVl3KCBFNoIQUhBhFRFHCAujKJGMUzoNjjsvQvvnlsdmryyQemylLV2bcgJxQxxztEgogd_0LlrfbwvUinCGeYp45E66ikV7whem3zhbSX9Msco72LIuxjyrxgivP-tbItKT3_Rn3-PAO6BV1vq5T-q_Or69rKXfgJa6pOo</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Zheng, You</creator><creator>Xu, Yong‐Sheng</creator><creator>Liu, Zhao</creator><creator>Liu, Hai‐Feng</creator><creator>Zhai, Ya‐Nan</creator><creator>Mao, Xiao‐Rong</creator><creator>Lei, Jun‐Qiang</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3259-2253</orcidid><orcidid>https://orcid.org/0000-0002-5348-6943</orcidid></search><sort><creationdate>202006</creationdate><title>Whole‐Liver Apparent Diffusion Coefficient Histogram Analysis for the Diagnosis and Staging of Liver Fibrosis</title><author>Zheng, You ; Xu, Yong‐Sheng ; Liu, Zhao ; Liu, Hai‐Feng ; Zhai, Ya‐Nan ; Mao, Xiao‐Rong ; Lei, Jun‐Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-fd81a055fc9153e30c19535544ff3b358f06a9ef9922b29acb4ff089fc3fc5123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>apparent diffusion coefficient</topic><topic>Bile</topic><topic>Confidence intervals</topic><topic>Diagnosis</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Entropy</topic><topic>Fibrosis</topic><topic>Field strength</topic><topic>Hepatitis</topic><topic>histogram</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image processing</topic><topic>Kurtosis</topic><topic>Likelihood ratio</topic><topic>Liver</topic><topic>Liver Cirrhosis - diagnostic imaging</topic><topic>Liver diseases</topic><topic>liver fibrosis</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Parameters</topic><topic>Population studies</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Skewness</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, You</creatorcontrib><creatorcontrib>Xu, Yong‐Sheng</creatorcontrib><creatorcontrib>Liu, Zhao</creatorcontrib><creatorcontrib>Liu, Hai‐Feng</creatorcontrib><creatorcontrib>Zhai, Ya‐Nan</creatorcontrib><creatorcontrib>Mao, Xiao‐Rong</creatorcontrib><creatorcontrib>Lei, Jun‐Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, You</au><au>Xu, Yong‐Sheng</au><au>Liu, Zhao</au><au>Liu, Hai‐Feng</au><au>Zhai, Ya‐Nan</au><au>Mao, Xiao‐Rong</au><au>Lei, Jun‐Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole‐Liver Apparent Diffusion Coefficient Histogram Analysis for the Diagnosis and Staging of Liver Fibrosis</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2020-06</date><risdate>2020</risdate><volume>51</volume><issue>6</issue><spage>1745</spage><epage>1754</epage><pages>1745-1754</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Conventional diffusion‐weighted imaging is limited in the quantitative evaluation of liver fibrosis, and whole‐liver apparent diffusion coefficient (ADC) histogram analysis might contribute to the diagnosis and staging of liver fibrosis. Purpose To explore the value of whole‐liver ADC histogram parameters in the diagnosis and staging of liver fibrosis. Study Type Retrospective. Population Twenty individuals with no liver disease and 86 patients with liver fibrosis, including 30 with chronic viral hepatitis, 29 with autoimmune hepatitis, and 27 with unexplained liver fibrosis patients. Field Strength/Sequence 3.0T/T1‐weighted, T2‐weighted, and diffusion‐weighted images. Assessment A region of interest (ROI) was drawn in each slice of the diffusion‐weighted images. Whole‐liver histogram parameters were obtained with dedicated software by accumulating all ROIs. The effectiveness of the parameters in differentiating stage 1 or greater (≥F1), stage 2 or greater (≥F2), and stage 3 or greater (≥F3) liver fibrosis was assessed. Statistical Tests Mann–Whitney U‐test and receiver operating characteristic curve analysis. Results Kurtosis, entropy, skewness, mode, and 90th and 75th percentiles exhibited significant differences among the pathological fibrosis stages (P &lt; 0.05). Kurtosis was found to be the most meaningful parameter in differentiating fibrosis stages of the viral hepatitis, autoimmune hepatitis, and unexplained liver fibrosis group (area under the curve) (AUC = 0.793, 0.771, 0.798, respectively). In the combined liver fibrosis group, kurtosis achieved the highest AUC (0.801; 95% confidence interval [CI]: 0.702–0.900; sensitivity: 0.750; specificity: 0.850; positive likelihood ratio: 4.953; negative likelihood ratio: 0.302; positive predictive value: 0.946; negative predictive value: 0.486), with a cutoff value of 1.817, in differentiating fibrosis stage ≥F1. Data Conclusion Kurtosis, entropy, skewness, mode, and 90th and 75th percentiles may contribute to the diagnosis and staging of liver fibrosis, especially kurtosis. Level of Evidence: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:1745–1754.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31729811</pmid><doi>10.1002/jmri.26987</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3259-2253</orcidid><orcidid>https://orcid.org/0000-0002-5348-6943</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2020-06, Vol.51 (6), p.1745-1754
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2315088806
source Wiley-Blackwell Read & Publish Collection
subjects apparent diffusion coefficient
Bile
Confidence intervals
Diagnosis
Diffusion
Diffusion coefficient
Diffusion Magnetic Resonance Imaging
Entropy
Fibrosis
Field strength
Hepatitis
histogram
Histograms
Humans
Image Interpretation, Computer-Assisted
Image processing
Kurtosis
Likelihood ratio
Liver
Liver Cirrhosis - diagnostic imaging
Liver diseases
liver fibrosis
Magnetic resonance imaging
Medical imaging
Parameters
Population studies
Retrospective Studies
ROC Curve
Sensitivity and Specificity
Skewness
Statistical analysis
Statistical tests
title Whole‐Liver Apparent Diffusion Coefficient Histogram Analysis for the Diagnosis and Staging of Liver Fibrosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole%E2%80%90Liver%20Apparent%20Diffusion%20Coefficient%20Histogram%20Analysis%20for%20the%20Diagnosis%20and%20Staging%20of%20Liver%20Fibrosis&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Zheng,%20You&rft.date=2020-06&rft.volume=51&rft.issue=6&rft.spage=1745&rft.epage=1754&rft.pages=1745-1754&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26987&rft_dat=%3Cproquest_cross%3E2401718458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3577-fd81a055fc9153e30c19535544ff3b358f06a9ef9922b29acb4ff089fc3fc5123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2401718458&rft_id=info:pmid/31729811&rfr_iscdi=true