Loading…

Revealing the Nature of Singlet Fission under the Veil of Internal Conversion

Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time‐resolved spectroscopy and th...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2020-01, Vol.59 (5), p.2003-2007
Main Authors: Wang, Long, Bai, Shuming, Wu, Yishi, Liu, Yanping, Yao, Jiannian, Fu, Hongbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3
cites cdi_FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3
container_end_page 2007
container_issue 5
container_start_page 2003
container_title Angewandte Chemie International Edition
container_volume 59
creator Wang, Long
Bai, Shuming
Wu, Yishi
Liu, Yanping
Yao, Jiannian
Fu, Hongbing
description Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time‐resolved spectroscopy and theoretical calculation, it is demonstrated that, instead of a conventional IC pathway, an unexpected intramolecular singlet fission (iSF) process is responsible for excited state deactivation in isoindigo derivatives. The 1TT state could form at ultrafast rate and nearly quantitatively in solution. In solid films, the slipped stacked intermolecular packing of a thiophene‐functionalized derivative leads to efficient triplet pair separation, giving rise to an overall triplet yield of 181 %. This work not only enriches the pool of iSF‐capable materials, but also contributes to a better understanding of the iSF mechanism, which could be relevant for designing new SF sensitizers. Deactivate by fission: An efficient intramolecular singlet fission (iSF) process, rather than detrimental internal conversion, is shown to be responsible for excited‐state deactivation in isoindigo derivatives. The 1(TT) states are generated nearly quantitatively in solution and can further split into two independent free triplets with a yield of about 180 % in solid thin films.
doi_str_mv 10.1002/anie.201912202
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315092475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315092475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgitPp1aMUvHjpzEvSpj3K2HQwJ_jrGtLlRTu6dibtZP-9rZsKXjy98Pjky-NLyBnQAVDKrnSZ44BRSIExyvbIEUQMQi4l32_fgvNQJhH0yLH3i9YnCY0PSY-DZCnw9IjcPeAadZGXr0H9hsFM143DoLLBY7sqsA7Gufd5VQZNadB9mRfMi05MyhpdqYtgWJVrdJ06IQdWFx5Pd7NPnsejp-FtOL2_mQyvp-FcyJiFxsQiY7GmxnAQUkiQFKzNIIPIGitEQmUG7fUUOUqmYw5xAkzajAnD0fI-udzmrlz13qCv1TL3cywKXWLVeMU4RDRlQkYtvfhDF1XTnd0pIRgk0JbVJ4OtmrvKe4dWrVy-1G6jgKquaNUVrX6Kbj-c72KbbInmh38324J0Cz7yAjf_xKnr2WT0G_4JSTGH2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344218177</pqid></control><display><type>article</type><title>Revealing the Nature of Singlet Fission under the Veil of Internal Conversion</title><source>Wiley</source><creator>Wang, Long ; Bai, Shuming ; Wu, Yishi ; Liu, Yanping ; Yao, Jiannian ; Fu, Hongbing</creator><creatorcontrib>Wang, Long ; Bai, Shuming ; Wu, Yishi ; Liu, Yanping ; Yao, Jiannian ; Fu, Hongbing</creatorcontrib><description>Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time‐resolved spectroscopy and theoretical calculation, it is demonstrated that, instead of a conventional IC pathway, an unexpected intramolecular singlet fission (iSF) process is responsible for excited state deactivation in isoindigo derivatives. The 1TT state could form at ultrafast rate and nearly quantitatively in solution. In solid films, the slipped stacked intermolecular packing of a thiophene‐functionalized derivative leads to efficient triplet pair separation, giving rise to an overall triplet yield of 181 %. This work not only enriches the pool of iSF‐capable materials, but also contributes to a better understanding of the iSF mechanism, which could be relevant for designing new SF sensitizers. Deactivate by fission: An efficient intramolecular singlet fission (iSF) process, rather than detrimental internal conversion, is shown to be responsible for excited‐state deactivation in isoindigo derivatives. The 1(TT) states are generated nearly quantitatively in solution and can further split into two independent free triplets with a yield of about 180 % in solid thin films.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201912202</identifier><identifier>PMID: 31729139</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Deactivation ; Energy conversion efficiency ; Fission ; Internal conversion ; intramolecular singlet fission ; isoindigo ; Maximum power ; photophysics ; Photovoltaic cells ; Photovoltaics ; Spectroscopy ; transient absorption spectroscopy</subject><ispartof>Angewandte Chemie International Edition, 2020-01, Vol.59 (5), p.2003-2007</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3</citedby><cites>FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3</cites><orcidid>0000-0003-4528-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31729139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Long</creatorcontrib><creatorcontrib>Bai, Shuming</creatorcontrib><creatorcontrib>Wu, Yishi</creatorcontrib><creatorcontrib>Liu, Yanping</creatorcontrib><creatorcontrib>Yao, Jiannian</creatorcontrib><creatorcontrib>Fu, Hongbing</creatorcontrib><title>Revealing the Nature of Singlet Fission under the Veil of Internal Conversion</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time‐resolved spectroscopy and theoretical calculation, it is demonstrated that, instead of a conventional IC pathway, an unexpected intramolecular singlet fission (iSF) process is responsible for excited state deactivation in isoindigo derivatives. The 1TT state could form at ultrafast rate and nearly quantitatively in solution. In solid films, the slipped stacked intermolecular packing of a thiophene‐functionalized derivative leads to efficient triplet pair separation, giving rise to an overall triplet yield of 181 %. This work not only enriches the pool of iSF‐capable materials, but also contributes to a better understanding of the iSF mechanism, which could be relevant for designing new SF sensitizers. Deactivate by fission: An efficient intramolecular singlet fission (iSF) process, rather than detrimental internal conversion, is shown to be responsible for excited‐state deactivation in isoindigo derivatives. The 1(TT) states are generated nearly quantitatively in solution and can further split into two independent free triplets with a yield of about 180 % in solid thin films.</description><subject>Deactivation</subject><subject>Energy conversion efficiency</subject><subject>Fission</subject><subject>Internal conversion</subject><subject>intramolecular singlet fission</subject><subject>isoindigo</subject><subject>Maximum power</subject><subject>photophysics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Spectroscopy</subject><subject>transient absorption spectroscopy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgitPp1aMUvHjpzEvSpj3K2HQwJ_jrGtLlRTu6dibtZP-9rZsKXjy98Pjky-NLyBnQAVDKrnSZ44BRSIExyvbIEUQMQi4l32_fgvNQJhH0yLH3i9YnCY0PSY-DZCnw9IjcPeAadZGXr0H9hsFM143DoLLBY7sqsA7Gufd5VQZNadB9mRfMi05MyhpdqYtgWJVrdJ06IQdWFx5Pd7NPnsejp-FtOL2_mQyvp-FcyJiFxsQiY7GmxnAQUkiQFKzNIIPIGitEQmUG7fUUOUqmYw5xAkzajAnD0fI-udzmrlz13qCv1TL3cywKXWLVeMU4RDRlQkYtvfhDF1XTnd0pIRgk0JbVJ4OtmrvKe4dWrVy-1G6jgKquaNUVrX6Kbj-c72KbbInmh38324J0Cz7yAjf_xKnr2WT0G_4JSTGH2w</recordid><startdate>20200127</startdate><enddate>20200127</enddate><creator>Wang, Long</creator><creator>Bai, Shuming</creator><creator>Wu, Yishi</creator><creator>Liu, Yanping</creator><creator>Yao, Jiannian</creator><creator>Fu, Hongbing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4528-189X</orcidid></search><sort><creationdate>20200127</creationdate><title>Revealing the Nature of Singlet Fission under the Veil of Internal Conversion</title><author>Wang, Long ; Bai, Shuming ; Wu, Yishi ; Liu, Yanping ; Yao, Jiannian ; Fu, Hongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deactivation</topic><topic>Energy conversion efficiency</topic><topic>Fission</topic><topic>Internal conversion</topic><topic>intramolecular singlet fission</topic><topic>isoindigo</topic><topic>Maximum power</topic><topic>photophysics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Spectroscopy</topic><topic>transient absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Long</creatorcontrib><creatorcontrib>Bai, Shuming</creatorcontrib><creatorcontrib>Wu, Yishi</creatorcontrib><creatorcontrib>Liu, Yanping</creatorcontrib><creatorcontrib>Yao, Jiannian</creatorcontrib><creatorcontrib>Fu, Hongbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Long</au><au>Bai, Shuming</au><au>Wu, Yishi</au><au>Liu, Yanping</au><au>Yao, Jiannian</au><au>Fu, Hongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Nature of Singlet Fission under the Veil of Internal Conversion</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-01-27</date><risdate>2020</risdate><volume>59</volume><issue>5</issue><spage>2003</spage><epage>2007</epage><pages>2003-2007</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time‐resolved spectroscopy and theoretical calculation, it is demonstrated that, instead of a conventional IC pathway, an unexpected intramolecular singlet fission (iSF) process is responsible for excited state deactivation in isoindigo derivatives. The 1TT state could form at ultrafast rate and nearly quantitatively in solution. In solid films, the slipped stacked intermolecular packing of a thiophene‐functionalized derivative leads to efficient triplet pair separation, giving rise to an overall triplet yield of 181 %. This work not only enriches the pool of iSF‐capable materials, but also contributes to a better understanding of the iSF mechanism, which could be relevant for designing new SF sensitizers. Deactivate by fission: An efficient intramolecular singlet fission (iSF) process, rather than detrimental internal conversion, is shown to be responsible for excited‐state deactivation in isoindigo derivatives. The 1(TT) states are generated nearly quantitatively in solution and can further split into two independent free triplets with a yield of about 180 % in solid thin films.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31729139</pmid><doi>10.1002/anie.201912202</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4528-189X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-01, Vol.59 (5), p.2003-2007
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2315092475
source Wiley
subjects Deactivation
Energy conversion efficiency
Fission
Internal conversion
intramolecular singlet fission
isoindigo
Maximum power
photophysics
Photovoltaic cells
Photovoltaics
Spectroscopy
transient absorption spectroscopy
title Revealing the Nature of Singlet Fission under the Veil of Internal Conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Nature%20of%20Singlet%20Fission%20under%20the%20Veil%20of%20Internal%20Conversion&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Long&rft.date=2020-01-27&rft.volume=59&rft.issue=5&rft.spage=2003&rft.epage=2007&rft.pages=2003-2007&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201912202&rft_dat=%3Cproquest_cross%3E2315092475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344218177&rft_id=info:pmid/31729139&rfr_iscdi=true