Loading…
Revealing the Nature of Singlet Fission under the Veil of Internal Conversion
Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time‐resolved spectroscopy and th...
Saved in:
Published in: | Angewandte Chemie International Edition 2020-01, Vol.59 (5), p.2003-2007 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3 |
container_end_page | 2007 |
container_issue | 5 |
container_start_page | 2003 |
container_title | Angewandte Chemie International Edition |
container_volume | 59 |
creator | Wang, Long Bai, Shuming Wu, Yishi Liu, Yanping Yao, Jiannian Fu, Hongbing |
description | Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time‐resolved spectroscopy and theoretical calculation, it is demonstrated that, instead of a conventional IC pathway, an unexpected intramolecular singlet fission (iSF) process is responsible for excited state deactivation in isoindigo derivatives. The 1TT state could form at ultrafast rate and nearly quantitatively in solution. In solid films, the slipped stacked intermolecular packing of a thiophene‐functionalized derivative leads to efficient triplet pair separation, giving rise to an overall triplet yield of 181 %. This work not only enriches the pool of iSF‐capable materials, but also contributes to a better understanding of the iSF mechanism, which could be relevant for designing new SF sensitizers.
Deactivate by fission: An efficient intramolecular singlet fission (iSF) process, rather than detrimental internal conversion, is shown to be responsible for excited‐state deactivation in isoindigo derivatives. The 1(TT) states are generated nearly quantitatively in solution and can further split into two independent free triplets with a yield of about 180 % in solid thin films. |
doi_str_mv | 10.1002/anie.201912202 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315092475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315092475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgitPp1aMUvHjpzEvSpj3K2HQwJ_jrGtLlRTu6dibtZP-9rZsKXjy98Pjky-NLyBnQAVDKrnSZ44BRSIExyvbIEUQMQi4l32_fgvNQJhH0yLH3i9YnCY0PSY-DZCnw9IjcPeAadZGXr0H9hsFM143DoLLBY7sqsA7Gufd5VQZNadB9mRfMi05MyhpdqYtgWJVrdJ06IQdWFx5Pd7NPnsejp-FtOL2_mQyvp-FcyJiFxsQiY7GmxnAQUkiQFKzNIIPIGitEQmUG7fUUOUqmYw5xAkzajAnD0fI-udzmrlz13qCv1TL3cywKXWLVeMU4RDRlQkYtvfhDF1XTnd0pIRgk0JbVJ4OtmrvKe4dWrVy-1G6jgKquaNUVrX6Kbj-c72KbbInmh38324J0Cz7yAjf_xKnr2WT0G_4JSTGH2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344218177</pqid></control><display><type>article</type><title>Revealing the Nature of Singlet Fission under the Veil of Internal Conversion</title><source>Wiley</source><creator>Wang, Long ; Bai, Shuming ; Wu, Yishi ; Liu, Yanping ; Yao, Jiannian ; Fu, Hongbing</creator><creatorcontrib>Wang, Long ; Bai, Shuming ; Wu, Yishi ; Liu, Yanping ; Yao, Jiannian ; Fu, Hongbing</creatorcontrib><description>Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time‐resolved spectroscopy and theoretical calculation, it is demonstrated that, instead of a conventional IC pathway, an unexpected intramolecular singlet fission (iSF) process is responsible for excited state deactivation in isoindigo derivatives. The 1TT state could form at ultrafast rate and nearly quantitatively in solution. In solid films, the slipped stacked intermolecular packing of a thiophene‐functionalized derivative leads to efficient triplet pair separation, giving rise to an overall triplet yield of 181 %. This work not only enriches the pool of iSF‐capable materials, but also contributes to a better understanding of the iSF mechanism, which could be relevant for designing new SF sensitizers.
Deactivate by fission: An efficient intramolecular singlet fission (iSF) process, rather than detrimental internal conversion, is shown to be responsible for excited‐state deactivation in isoindigo derivatives. The 1(TT) states are generated nearly quantitatively in solution and can further split into two independent free triplets with a yield of about 180 % in solid thin films.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201912202</identifier><identifier>PMID: 31729139</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Deactivation ; Energy conversion efficiency ; Fission ; Internal conversion ; intramolecular singlet fission ; isoindigo ; Maximum power ; photophysics ; Photovoltaic cells ; Photovoltaics ; Spectroscopy ; transient absorption spectroscopy</subject><ispartof>Angewandte Chemie International Edition, 2020-01, Vol.59 (5), p.2003-2007</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3</citedby><cites>FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3</cites><orcidid>0000-0003-4528-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31729139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Long</creatorcontrib><creatorcontrib>Bai, Shuming</creatorcontrib><creatorcontrib>Wu, Yishi</creatorcontrib><creatorcontrib>Liu, Yanping</creatorcontrib><creatorcontrib>Yao, Jiannian</creatorcontrib><creatorcontrib>Fu, Hongbing</creatorcontrib><title>Revealing the Nature of Singlet Fission under the Veil of Internal Conversion</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time‐resolved spectroscopy and theoretical calculation, it is demonstrated that, instead of a conventional IC pathway, an unexpected intramolecular singlet fission (iSF) process is responsible for excited state deactivation in isoindigo derivatives. The 1TT state could form at ultrafast rate and nearly quantitatively in solution. In solid films, the slipped stacked intermolecular packing of a thiophene‐functionalized derivative leads to efficient triplet pair separation, giving rise to an overall triplet yield of 181 %. This work not only enriches the pool of iSF‐capable materials, but also contributes to a better understanding of the iSF mechanism, which could be relevant for designing new SF sensitizers.
Deactivate by fission: An efficient intramolecular singlet fission (iSF) process, rather than detrimental internal conversion, is shown to be responsible for excited‐state deactivation in isoindigo derivatives. The 1(TT) states are generated nearly quantitatively in solution and can further split into two independent free triplets with a yield of about 180 % in solid thin films.</description><subject>Deactivation</subject><subject>Energy conversion efficiency</subject><subject>Fission</subject><subject>Internal conversion</subject><subject>intramolecular singlet fission</subject><subject>isoindigo</subject><subject>Maximum power</subject><subject>photophysics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Spectroscopy</subject><subject>transient absorption spectroscopy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgitPp1aMUvHjpzEvSpj3K2HQwJ_jrGtLlRTu6dibtZP-9rZsKXjy98Pjky-NLyBnQAVDKrnSZ44BRSIExyvbIEUQMQi4l32_fgvNQJhH0yLH3i9YnCY0PSY-DZCnw9IjcPeAadZGXr0H9hsFM143DoLLBY7sqsA7Gufd5VQZNadB9mRfMi05MyhpdqYtgWJVrdJ06IQdWFx5Pd7NPnsejp-FtOL2_mQyvp-FcyJiFxsQiY7GmxnAQUkiQFKzNIIPIGitEQmUG7fUUOUqmYw5xAkzajAnD0fI-udzmrlz13qCv1TL3cywKXWLVeMU4RDRlQkYtvfhDF1XTnd0pIRgk0JbVJ4OtmrvKe4dWrVy-1G6jgKquaNUVrX6Kbj-c72KbbInmh38324J0Cz7yAjf_xKnr2WT0G_4JSTGH2w</recordid><startdate>20200127</startdate><enddate>20200127</enddate><creator>Wang, Long</creator><creator>Bai, Shuming</creator><creator>Wu, Yishi</creator><creator>Liu, Yanping</creator><creator>Yao, Jiannian</creator><creator>Fu, Hongbing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4528-189X</orcidid></search><sort><creationdate>20200127</creationdate><title>Revealing the Nature of Singlet Fission under the Veil of Internal Conversion</title><author>Wang, Long ; Bai, Shuming ; Wu, Yishi ; Liu, Yanping ; Yao, Jiannian ; Fu, Hongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Deactivation</topic><topic>Energy conversion efficiency</topic><topic>Fission</topic><topic>Internal conversion</topic><topic>intramolecular singlet fission</topic><topic>isoindigo</topic><topic>Maximum power</topic><topic>photophysics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Spectroscopy</topic><topic>transient absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Long</creatorcontrib><creatorcontrib>Bai, Shuming</creatorcontrib><creatorcontrib>Wu, Yishi</creatorcontrib><creatorcontrib>Liu, Yanping</creatorcontrib><creatorcontrib>Yao, Jiannian</creatorcontrib><creatorcontrib>Fu, Hongbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Long</au><au>Bai, Shuming</au><au>Wu, Yishi</au><au>Liu, Yanping</au><au>Yao, Jiannian</au><au>Fu, Hongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Nature of Singlet Fission under the Veil of Internal Conversion</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-01-27</date><risdate>2020</risdate><volume>59</volume><issue>5</issue><spage>2003</spage><epage>2007</epage><pages>2003-2007</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Singlet fission (SF) holds the potential to boost the maximum power conversion efficiency of photovoltaic devices. Internal conversion (IC) has been considered as one of the major competitive deactivation pathways to transform excitation energy into heat. Now, using time‐resolved spectroscopy and theoretical calculation, it is demonstrated that, instead of a conventional IC pathway, an unexpected intramolecular singlet fission (iSF) process is responsible for excited state deactivation in isoindigo derivatives. The 1TT state could form at ultrafast rate and nearly quantitatively in solution. In solid films, the slipped stacked intermolecular packing of a thiophene‐functionalized derivative leads to efficient triplet pair separation, giving rise to an overall triplet yield of 181 %. This work not only enriches the pool of iSF‐capable materials, but also contributes to a better understanding of the iSF mechanism, which could be relevant for designing new SF sensitizers.
Deactivate by fission: An efficient intramolecular singlet fission (iSF) process, rather than detrimental internal conversion, is shown to be responsible for excited‐state deactivation in isoindigo derivatives. The 1(TT) states are generated nearly quantitatively in solution and can further split into two independent free triplets with a yield of about 180 % in solid thin films.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31729139</pmid><doi>10.1002/anie.201912202</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4528-189X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2020-01, Vol.59 (5), p.2003-2007 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2315092475 |
source | Wiley |
subjects | Deactivation Energy conversion efficiency Fission Internal conversion intramolecular singlet fission isoindigo Maximum power photophysics Photovoltaic cells Photovoltaics Spectroscopy transient absorption spectroscopy |
title | Revealing the Nature of Singlet Fission under the Veil of Internal Conversion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Nature%20of%20Singlet%20Fission%20under%20the%20Veil%20of%20Internal%20Conversion&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wang,%20Long&rft.date=2020-01-27&rft.volume=59&rft.issue=5&rft.spage=2003&rft.epage=2007&rft.pages=2003-2007&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201912202&rft_dat=%3Cproquest_cross%3E2315092475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4762-dd64b26a0dd3147471701ffb1b15fdf44807b11430e3e72a63168127fb24d3ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344218177&rft_id=info:pmid/31729139&rfr_iscdi=true |