Loading…

Gradual ghost imaging of moving objects by tracking based on cross correlation

The requirement of a large number of samplings limits the performance of ghost imaging for moving objects. Conventionally, tracking and imaging of the moving objects are done independently; thus, sequential clear images of the moving target during its evolution are required. In this Letter, we propo...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2019-11, Vol.44 (22), p.5594-5597
Main Authors: Sun, Shuai, Gu, Jun-Hao, Lin, Hui-Zu, Jiang, Liang, Liu, Wei-Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c296t-2cdf46ef28028f3fc7b853cd83789d3d40847a3d15fc2687ddadef8399e088743
cites cdi_FETCH-LOGICAL-c296t-2cdf46ef28028f3fc7b853cd83789d3d40847a3d15fc2687ddadef8399e088743
container_end_page 5597
container_issue 22
container_start_page 5594
container_title Optics letters
container_volume 44
creator Sun, Shuai
Gu, Jun-Hao
Lin, Hui-Zu
Jiang, Liang
Liu, Wei-Tao
description The requirement of a large number of samplings limits the performance of ghost imaging for moving objects. Conventionally, tracking and imaging of the moving objects are done independently; thus, sequential clear images of the moving target during its evolution are required. In this Letter, we propose to obtain the displacement of the object via cross correlation between sequential unclear rough images. Then, a high-quality image of the moving object can be reconstructed gradually during its evolution. Our method works well for translating and rotating objects.
doi_str_mv 10.1364/OL.44.005594
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315099706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315099706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-2cdf46ef28028f3fc7b853cd83789d3d40847a3d15fc2687ddadef8399e088743</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EEqWw4wMssWFBimNP_FgiBAUpohtYW44fpSWNi50g9e9JW1asZjQ6Gt17ELouyaxkHO4X9QxgRkhVKThBk7JiqgCh4BRNSAm8UJWi5-gi5zUhhAvGJuhtnowbTIuXnzH3eLUxy1W3xDHgTfw5bM3a2z7jZof7ZOzX_taY7B2OHbYp5oxtTMm3pl_F7hKdBdNmf_U3p-jj-en98aWoF_PXx4e6sFTxvqDWBeA-UEmoDCxY0ciKWSeZkMoxB0SCMMyVVbCUS-GccT5IppQnUgpgU3R7_LtN8XvwudebVba-bU3n45A1ZWVFlBKEj-jNP3Qdh9SN6fYUFwKAipG6O1KHSskHvU2jjLTTJdF7uXpRawB9lMt-AX-Xa7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316774427</pqid></control><display><type>article</type><title>Gradual ghost imaging of moving objects by tracking based on cross correlation</title><source>Optica Publishing Group (OPG)</source><creator>Sun, Shuai ; Gu, Jun-Hao ; Lin, Hui-Zu ; Jiang, Liang ; Liu, Wei-Tao</creator><creatorcontrib>Sun, Shuai ; Gu, Jun-Hao ; Lin, Hui-Zu ; Jiang, Liang ; Liu, Wei-Tao</creatorcontrib><description>The requirement of a large number of samplings limits the performance of ghost imaging for moving objects. Conventionally, tracking and imaging of the moving objects are done independently; thus, sequential clear images of the moving target during its evolution are required. In this Letter, we propose to obtain the displacement of the object via cross correlation between sequential unclear rough images. Then, a high-quality image of the moving object can be reconstructed gradually during its evolution. Our method works well for translating and rotating objects.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.44.005594</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Cross correlation ; Evolution ; Image quality ; Image reconstruction ; Moving object recognition ; Tracking</subject><ispartof>Optics letters, 2019-11, Vol.44 (22), p.5594-5597</ispartof><rights>Copyright Optical Society of America Nov 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-2cdf46ef28028f3fc7b853cd83789d3d40847a3d15fc2687ddadef8399e088743</citedby><cites>FETCH-LOGICAL-c296t-2cdf46ef28028f3fc7b853cd83789d3d40847a3d15fc2687ddadef8399e088743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27903,27904</link.rule.ids></links><search><creatorcontrib>Sun, Shuai</creatorcontrib><creatorcontrib>Gu, Jun-Hao</creatorcontrib><creatorcontrib>Lin, Hui-Zu</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Liu, Wei-Tao</creatorcontrib><title>Gradual ghost imaging of moving objects by tracking based on cross correlation</title><title>Optics letters</title><description>The requirement of a large number of samplings limits the performance of ghost imaging for moving objects. Conventionally, tracking and imaging of the moving objects are done independently; thus, sequential clear images of the moving target during its evolution are required. In this Letter, we propose to obtain the displacement of the object via cross correlation between sequential unclear rough images. Then, a high-quality image of the moving object can be reconstructed gradually during its evolution. Our method works well for translating and rotating objects.</description><subject>Cross correlation</subject><subject>Evolution</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Moving object recognition</subject><subject>Tracking</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EEqWw4wMssWFBimNP_FgiBAUpohtYW44fpSWNi50g9e9JW1asZjQ6Gt17ELouyaxkHO4X9QxgRkhVKThBk7JiqgCh4BRNSAm8UJWi5-gi5zUhhAvGJuhtnowbTIuXnzH3eLUxy1W3xDHgTfw5bM3a2z7jZof7ZOzX_taY7B2OHbYp5oxtTMm3pl_F7hKdBdNmf_U3p-jj-en98aWoF_PXx4e6sFTxvqDWBeA-UEmoDCxY0ciKWSeZkMoxB0SCMMyVVbCUS-GccT5IppQnUgpgU3R7_LtN8XvwudebVba-bU3n45A1ZWVFlBKEj-jNP3Qdh9SN6fYUFwKAipG6O1KHSskHvU2jjLTTJdF7uXpRawB9lMt-AX-Xa7g</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>Sun, Shuai</creator><creator>Gu, Jun-Hao</creator><creator>Lin, Hui-Zu</creator><creator>Jiang, Liang</creator><creator>Liu, Wei-Tao</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20191115</creationdate><title>Gradual ghost imaging of moving objects by tracking based on cross correlation</title><author>Sun, Shuai ; Gu, Jun-Hao ; Lin, Hui-Zu ; Jiang, Liang ; Liu, Wei-Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-2cdf46ef28028f3fc7b853cd83789d3d40847a3d15fc2687ddadef8399e088743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cross correlation</topic><topic>Evolution</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Moving object recognition</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Shuai</creatorcontrib><creatorcontrib>Gu, Jun-Hao</creatorcontrib><creatorcontrib>Lin, Hui-Zu</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Liu, Wei-Tao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Shuai</au><au>Gu, Jun-Hao</au><au>Lin, Hui-Zu</au><au>Jiang, Liang</au><au>Liu, Wei-Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradual ghost imaging of moving objects by tracking based on cross correlation</atitle><jtitle>Optics letters</jtitle><date>2019-11-15</date><risdate>2019</risdate><volume>44</volume><issue>22</issue><spage>5594</spage><epage>5597</epage><pages>5594-5597</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>The requirement of a large number of samplings limits the performance of ghost imaging for moving objects. Conventionally, tracking and imaging of the moving objects are done independently; thus, sequential clear images of the moving target during its evolution are required. In this Letter, we propose to obtain the displacement of the object via cross correlation between sequential unclear rough images. Then, a high-quality image of the moving object can be reconstructed gradually during its evolution. Our method works well for translating and rotating objects.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/OL.44.005594</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2019-11, Vol.44 (22), p.5594-5597
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_2315099706
source Optica Publishing Group (OPG)
subjects Cross correlation
Evolution
Image quality
Image reconstruction
Moving object recognition
Tracking
title Gradual ghost imaging of moving objects by tracking based on cross correlation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradual%20ghost%20imaging%20of%20moving%20objects%20by%20tracking%20based%20on%20cross%20correlation&rft.jtitle=Optics%20letters&rft.au=Sun,%20Shuai&rft.date=2019-11-15&rft.volume=44&rft.issue=22&rft.spage=5594&rft.epage=5597&rft.pages=5594-5597&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.44.005594&rft_dat=%3Cproquest_cross%3E2315099706%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-2cdf46ef28028f3fc7b853cd83789d3d40847a3d15fc2687ddadef8399e088743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316774427&rft_id=info:pmid/&rfr_iscdi=true