Loading…
The Relationship between Speech Perceptual Discrimination and Speech Production in Parkinson's Disease
Purpose: We recently demonstrated that individuals with Parkinson's disease (PD) respond differentially to specific altered auditory feedback parameters during speech production. Participants with PD respond more robustly to pitch and less robustly to formant manipulations compared to control p...
Saved in:
Published in: | Journal of speech, language, and hearing research language, and hearing research, 2019-12, Vol.62 (12), p.4256-4268 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose: We recently demonstrated that individuals with Parkinson's disease (PD) respond differentially to specific altered auditory feedback parameters during speech production. Participants with PD respond more robustly to pitch and less robustly to formant manipulations compared to control participants. In this study, we investigated whether differences in perceptual processing may in part underlie these compensatory differences in speech production. Methods: Pitch and formant feedback manipulations were presented under 2 conditions: production and listening. In the production condition, 15 participants with PD and 15 age- and gender-matched healthy control participants judged whether their own speech output was manipulated in real time. During the listening task, participants judged whether paired tokens of their previously recorded speech samples were the same or different. Results: Under listening, 1st formant manipulation discrimination was significantly reduced for the PD group compared to the control group. There was a trend toward better discrimination of pitch in the PD group, but the group difference was not significant. Under the production condition, the ability of participants with PD to identify pitch manipulations was greater than that of the controls. Conclusion: The findings suggest perceptual processing differences associated with acoustic parameters of fundamental frequency and 1st formant perturbations in PD. These findings extend our previous results, indicating that different patterns of compensation to pitch and 1st formant shifts may reflect a combination of sensory and motor mechanisms that are differentially influenced by basal ganglia dysfunction. |
---|---|
ISSN: | 1092-4388 1558-9102 |
DOI: | 10.1044/2019_JSLHR-S-18-0425 |