Loading…

Sharp bounds on the relative treatment effect for ordinal outcomes

For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ=pr{Yi(1)>Yi(0)}−pr{Yi(1)

Saved in:
Bibliographic Details
Published in:Biometrics 2020-06, Vol.76 (2), p.664-669
Main Authors: Lu, Jiannan, Zhang, Yunshu, Ding, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03
cites cdi_FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03
container_end_page 669
container_issue 2
container_start_page 664
container_title Biometrics
container_volume 76
creator Lu, Jiannan
Zhang, Yunshu
Ding, Peng
description For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ=pr{Yi(1)>Yi(0)}−pr{Yi(1)
doi_str_mv 10.1111/biom.13148
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315974146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315974146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03</originalsourceid><addsrcrecordid>eNp90E1LwzAcx_EgipvTiy9AAl5E6EyapA9HN3wYTHZQwVvJkn9YR9vMpFX27s3s9ODBXELgw5fwQ-ickjEN52ZZ2npMGeXZARpSwWlEeEwO0ZAQkkSM07cBOvF-HZ65IPExGjCa8jhJ-BBNnlfSbfDSdo322Da4XQF2UMm2_ADcOpBtDU2LwRhQLTbWYet02cgK265VtgZ_io6MrDyc7e8Rer2_e5k-RvPFw2x6O48UE2kWGRFrI41QOklCTYsUUi3zPCaS0IymuTBcKJMKblQWU50wIEToZa4YF5khbISu-u7G2fcOfFvUpVdQVbIB2_kiZlTkKac8CfTyD13bzoVPB8VpTDjLszyo614pZ713YIqNK2vptgUlxW7ZYrds8b1swBf7ZLesQf_SnykDoD34LCvY_pMqJrPFUx_9AgQwgoY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412043989</pqid></control><display><type>article</type><title>Sharp bounds on the relative treatment effect for ordinal outcomes</title><source>SPORTDiscus</source><source>Oxford Journals Online</source><creator>Lu, Jiannan ; Zhang, Yunshu ; Ding, Peng</creator><creatorcontrib>Lu, Jiannan ; Zhang, Yunshu ; Ding, Peng</creatorcontrib><description>For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ=pr{Yi(1)&gt;Yi(0)}−pr{Yi(1)&lt;Yi(0)}, with Yi(1) and Yi(0) being the potential outcomes of unit i under treatment and control, respectively. Given the marginal distributions of the potential outcomes, we derive the sharp bounds on γ, which are identifiable parameters based on the observed data. Agresti and Kateri focused on modeling strategies under the assumption of independent potential outcomes, but we allow for arbitrary dependence.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13148</identifier><identifier>PMID: 31742664</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>causal inference ; Parameter identification ; partial identification ; potential outcomes</subject><ispartof>Biometrics, 2020-06, Vol.76 (2), p.664-669</ispartof><rights>2019 The International Biometric Society</rights><rights>2019 The International Biometric Society.</rights><rights>2020 The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03</citedby><cites>FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03</cites><orcidid>0000-0002-8839-6024 ; 0000-0002-2704-2353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31742664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Jiannan</creatorcontrib><creatorcontrib>Zhang, Yunshu</creatorcontrib><creatorcontrib>Ding, Peng</creatorcontrib><title>Sharp bounds on the relative treatment effect for ordinal outcomes</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ=pr{Yi(1)&gt;Yi(0)}−pr{Yi(1)&lt;Yi(0)}, with Yi(1) and Yi(0) being the potential outcomes of unit i under treatment and control, respectively. Given the marginal distributions of the potential outcomes, we derive the sharp bounds on γ, which are identifiable parameters based on the observed data. Agresti and Kateri focused on modeling strategies under the assumption of independent potential outcomes, but we allow for arbitrary dependence.</description><subject>causal inference</subject><subject>Parameter identification</subject><subject>partial identification</subject><subject>potential outcomes</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcx_EgipvTiy9AAl5E6EyapA9HN3wYTHZQwVvJkn9YR9vMpFX27s3s9ODBXELgw5fwQ-ickjEN52ZZ2npMGeXZARpSwWlEeEwO0ZAQkkSM07cBOvF-HZ65IPExGjCa8jhJ-BBNnlfSbfDSdo322Da4XQF2UMm2_ADcOpBtDU2LwRhQLTbWYet02cgK265VtgZ_io6MrDyc7e8Rer2_e5k-RvPFw2x6O48UE2kWGRFrI41QOklCTYsUUi3zPCaS0IymuTBcKJMKblQWU50wIEToZa4YF5khbISu-u7G2fcOfFvUpVdQVbIB2_kiZlTkKac8CfTyD13bzoVPB8VpTDjLszyo614pZ713YIqNK2vptgUlxW7ZYrds8b1swBf7ZLesQf_SnykDoD34LCvY_pMqJrPFUx_9AgQwgoY</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Lu, Jiannan</creator><creator>Zhang, Yunshu</creator><creator>Ding, Peng</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8839-6024</orcidid><orcidid>https://orcid.org/0000-0002-2704-2353</orcidid></search><sort><creationdate>202006</creationdate><title>Sharp bounds on the relative treatment effect for ordinal outcomes</title><author>Lu, Jiannan ; Zhang, Yunshu ; Ding, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>causal inference</topic><topic>Parameter identification</topic><topic>partial identification</topic><topic>potential outcomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jiannan</creatorcontrib><creatorcontrib>Zhang, Yunshu</creatorcontrib><creatorcontrib>Ding, Peng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jiannan</au><au>Zhang, Yunshu</au><au>Ding, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp bounds on the relative treatment effect for ordinal outcomes</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2020-06</date><risdate>2020</risdate><volume>76</volume><issue>2</issue><spage>664</spage><epage>669</epage><pages>664-669</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ=pr{Yi(1)&gt;Yi(0)}−pr{Yi(1)&lt;Yi(0)}, with Yi(1) and Yi(0) being the potential outcomes of unit i under treatment and control, respectively. Given the marginal distributions of the potential outcomes, we derive the sharp bounds on γ, which are identifiable parameters based on the observed data. Agresti and Kateri focused on modeling strategies under the assumption of independent potential outcomes, but we allow for arbitrary dependence.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>31742664</pmid><doi>10.1111/biom.13148</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8839-6024</orcidid><orcidid>https://orcid.org/0000-0002-2704-2353</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2020-06, Vol.76 (2), p.664-669
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_2315974146
source SPORTDiscus; Oxford Journals Online
subjects causal inference
Parameter identification
partial identification
potential outcomes
title Sharp bounds on the relative treatment effect for ordinal outcomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20bounds%20on%20the%20relative%20treatment%20effect%20for%20ordinal%20outcomes&rft.jtitle=Biometrics&rft.au=Lu,%20Jiannan&rft.date=2020-06&rft.volume=76&rft.issue=2&rft.spage=664&rft.epage=669&rft.pages=664-669&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13148&rft_dat=%3Cproquest_cross%3E2315974146%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2412043989&rft_id=info:pmid/31742664&rfr_iscdi=true