Loading…
Sharp bounds on the relative treatment effect for ordinal outcomes
For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ=pr{Yi(1)>Yi(0)}−pr{Yi(1)
Saved in:
Published in: | Biometrics 2020-06, Vol.76 (2), p.664-669 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03 |
container_end_page | 669 |
container_issue | 2 |
container_start_page | 664 |
container_title | Biometrics |
container_volume | 76 |
creator | Lu, Jiannan Zhang, Yunshu Ding, Peng |
description | For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ=pr{Yi(1)>Yi(0)}−pr{Yi(1) |
doi_str_mv | 10.1111/biom.13148 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2315974146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315974146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03</originalsourceid><addsrcrecordid>eNp90E1LwzAcx_EgipvTiy9AAl5E6EyapA9HN3wYTHZQwVvJkn9YR9vMpFX27s3s9ODBXELgw5fwQ-ickjEN52ZZ2npMGeXZARpSwWlEeEwO0ZAQkkSM07cBOvF-HZ65IPExGjCa8jhJ-BBNnlfSbfDSdo322Da4XQF2UMm2_ADcOpBtDU2LwRhQLTbWYet02cgK265VtgZ_io6MrDyc7e8Rer2_e5k-RvPFw2x6O48UE2kWGRFrI41QOklCTYsUUi3zPCaS0IymuTBcKJMKblQWU50wIEToZa4YF5khbISu-u7G2fcOfFvUpVdQVbIB2_kiZlTkKac8CfTyD13bzoVPB8VpTDjLszyo614pZ713YIqNK2vptgUlxW7ZYrds8b1swBf7ZLesQf_SnykDoD34LCvY_pMqJrPFUx_9AgQwgoY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412043989</pqid></control><display><type>article</type><title>Sharp bounds on the relative treatment effect for ordinal outcomes</title><source>SPORTDiscus</source><source>Oxford Journals Online</source><creator>Lu, Jiannan ; Zhang, Yunshu ; Ding, Peng</creator><creatorcontrib>Lu, Jiannan ; Zhang, Yunshu ; Ding, Peng</creatorcontrib><description>For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ=pr{Yi(1)>Yi(0)}−pr{Yi(1)<Yi(0)}, with Yi(1) and Yi(0) being the potential outcomes of unit i under treatment and control, respectively. Given the marginal distributions of the potential outcomes, we derive the sharp bounds on γ, which are identifiable parameters based on the observed data. Agresti and Kateri focused on modeling strategies under the assumption of independent potential outcomes, but we allow for arbitrary dependence.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13148</identifier><identifier>PMID: 31742664</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>causal inference ; Parameter identification ; partial identification ; potential outcomes</subject><ispartof>Biometrics, 2020-06, Vol.76 (2), p.664-669</ispartof><rights>2019 The International Biometric Society</rights><rights>2019 The International Biometric Society.</rights><rights>2020 The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03</citedby><cites>FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03</cites><orcidid>0000-0002-8839-6024 ; 0000-0002-2704-2353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31742664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Jiannan</creatorcontrib><creatorcontrib>Zhang, Yunshu</creatorcontrib><creatorcontrib>Ding, Peng</creatorcontrib><title>Sharp bounds on the relative treatment effect for ordinal outcomes</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ=pr{Yi(1)>Yi(0)}−pr{Yi(1)<Yi(0)}, with Yi(1) and Yi(0) being the potential outcomes of unit i under treatment and control, respectively. Given the marginal distributions of the potential outcomes, we derive the sharp bounds on γ, which are identifiable parameters based on the observed data. Agresti and Kateri focused on modeling strategies under the assumption of independent potential outcomes, but we allow for arbitrary dependence.</description><subject>causal inference</subject><subject>Parameter identification</subject><subject>partial identification</subject><subject>potential outcomes</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcx_EgipvTiy9AAl5E6EyapA9HN3wYTHZQwVvJkn9YR9vMpFX27s3s9ODBXELgw5fwQ-ickjEN52ZZ2npMGeXZARpSwWlEeEwO0ZAQkkSM07cBOvF-HZ65IPExGjCa8jhJ-BBNnlfSbfDSdo322Da4XQF2UMm2_ADcOpBtDU2LwRhQLTbWYet02cgK265VtgZ_io6MrDyc7e8Rer2_e5k-RvPFw2x6O48UE2kWGRFrI41QOklCTYsUUi3zPCaS0IymuTBcKJMKblQWU50wIEToZa4YF5khbISu-u7G2fcOfFvUpVdQVbIB2_kiZlTkKac8CfTyD13bzoVPB8VpTDjLszyo614pZ713YIqNK2vptgUlxW7ZYrds8b1swBf7ZLesQf_SnykDoD34LCvY_pMqJrPFUx_9AgQwgoY</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Lu, Jiannan</creator><creator>Zhang, Yunshu</creator><creator>Ding, Peng</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8839-6024</orcidid><orcidid>https://orcid.org/0000-0002-2704-2353</orcidid></search><sort><creationdate>202006</creationdate><title>Sharp bounds on the relative treatment effect for ordinal outcomes</title><author>Lu, Jiannan ; Zhang, Yunshu ; Ding, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>causal inference</topic><topic>Parameter identification</topic><topic>partial identification</topic><topic>potential outcomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jiannan</creatorcontrib><creatorcontrib>Zhang, Yunshu</creatorcontrib><creatorcontrib>Ding, Peng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jiannan</au><au>Zhang, Yunshu</au><au>Ding, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp bounds on the relative treatment effect for ordinal outcomes</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2020-06</date><risdate>2020</risdate><volume>76</volume><issue>2</issue><spage>664</spage><epage>669</epage><pages>664-669</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as γ=pr{Yi(1)>Yi(0)}−pr{Yi(1)<Yi(0)}, with Yi(1) and Yi(0) being the potential outcomes of unit i under treatment and control, respectively. Given the marginal distributions of the potential outcomes, we derive the sharp bounds on γ, which are identifiable parameters based on the observed data. Agresti and Kateri focused on modeling strategies under the assumption of independent potential outcomes, but we allow for arbitrary dependence.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>31742664</pmid><doi>10.1111/biom.13148</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8839-6024</orcidid><orcidid>https://orcid.org/0000-0002-2704-2353</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2020-06, Vol.76 (2), p.664-669 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_2315974146 |
source | SPORTDiscus; Oxford Journals Online |
subjects | causal inference Parameter identification partial identification potential outcomes |
title | Sharp bounds on the relative treatment effect for ordinal outcomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20bounds%20on%20the%20relative%20treatment%20effect%20for%20ordinal%20outcomes&rft.jtitle=Biometrics&rft.au=Lu,%20Jiannan&rft.date=2020-06&rft.volume=76&rft.issue=2&rft.spage=664&rft.epage=669&rft.pages=664-669&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13148&rft_dat=%3Cproquest_cross%3E2315974146%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3578-f52dfaf5cd66effd57e7da9920a0181795f45cf754fc821d63e005db9c3458f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2412043989&rft_id=info:pmid/31742664&rfr_iscdi=true |