Loading…

Molecular Design Strategy of Thermally Activated Delayed Fluorescent Emitters Using CN‐Substituted Imidazopyrazine as a New Electron‐Accepting Unit

Thermally activated delayed fluorescence (TADF)‐based organic light‐emitting diodes (OLEDs) have attracted enormous attention recently due to their capability to replace conventional phosphorescent organic light‐emitting diodes for practical applications. In this work, a newly designed CN‐substitute...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry, an Asian journal an Asian journal, 2020-01, Vol.15 (1), p.122-128
Main Authors: Kothavale, Shantaram, Lee, Kyung Hyung, Lee, Jun Yeob
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4761-837ed8ada992efe64aefb2f06ee2afb117b06343754690f52072286aef6d2e9b3
cites cdi_FETCH-LOGICAL-c4761-837ed8ada992efe64aefb2f06ee2afb117b06343754690f52072286aef6d2e9b3
container_end_page 128
container_issue 1
container_start_page 122
container_title Chemistry, an Asian journal
container_volume 15
creator Kothavale, Shantaram
Lee, Kyung Hyung
Lee, Jun Yeob
description Thermally activated delayed fluorescence (TADF)‐based organic light‐emitting diodes (OLEDs) have attracted enormous attention recently due to their capability to replace conventional phosphorescent organic light‐emitting diodes for practical applications. In this work, a newly designed CN‐substituted imidazopyrazine moiety was utilized as an electron‐accepting unit in a TADF emitter. Two TADF emitters, 8‐(3‐cyano‐4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (Ac‐CNImPyr) and 8‐(3‐cyano‐4‐(10H‐phenoxazin‐10‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (PXZ‐CNImPyr), were developed based on the CN‐substituted imidazopyrazine acceptor combined with acridine and phenoxazine donor, respectively. A CN‐substituted phenyl spacer was introduced between the donor and acceptor for a sufficiently small singlet‐triplet energy gap (ΔEST) and molecular orbital management. Small ΔEST of 0.07 eV was achieved for the phenoxazine donor‐based PXZ‐CNImPyr emitter. As a result, an organic light‐emitting diode based on the PXZ‐CNImPyr emitter exhibited a high external quantum efficiency of up to 12.7 %, which surpassed the EQE limit of common fluorescent emitters. Hence, the CN‐modified imidazopyrazine unit can be introduced as a new acceptor for further modifications to develop efficient TADF‐based OLEDs. A molecular design strategy utilizing imidazopyrazine as new electron‐accepting unit for two thermally activated delayed fluorescence (TADF) emitters (Ac‐CNImPyr and PXZ‐CNImPyr) is proposed. Especially, the TADF emitter with a strong phenoxazine donor (PXZ‐CNImPyr) exhibited sufficiently small ΔEST to initiate the RISC process and realize a high external quantum efficiency of up to 12.7 %.
doi_str_mv 10.1002/asia.201901311
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2316430023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2316430023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4761-837ed8ada992efe64aefb2f06ee2afb117b06343754690f52072286aef6d2e9b3</originalsourceid><addsrcrecordid>eNqFkb1u2zAUhYmiQZMmXTsWBLpkscM_U-IouE5jIE0Hx0A2gZKuXAaU6JJUA2XKI3Tr--VJSsOpC3TpdAniO4f38CD0npIpJYRd6GD0lBGqCOWUvkInNJd0IjJ69_pwZvkxehvCPSEzRlT-Bh1zmgku6ewE_friLNSD1R5_gmA2PV5FryNsRuxafPsNfKetHXFRR_Mj3TcJs3pM89IOzkOooY940ZkYwQe8Dqbf4PnN89PP1VCFaOKw0yw70-hHtx29fjQ9YB2wxjfwgBfp8ehdn_iirmEbd_J1b-IZOmq1DfDuZZ6i9eXidn41uf76eTkvrie1yFK4nGfQ5LrRSjFoQQoNbcVaIgGYbitKs4pILng2E1KRNuXPGMtlomTDQFX8FJ3vfbfefR8gxLIzKZO1ugc3hJJxKgVPP80T-vEf9N4Nvk_bJYoLyYhQKlHTPVV7F4KHttx602k_lpSUu8rKXWXlobIk-PBiO1QdNAf8T0cJUHvgwVgY_2NXFqtl8df8N8FKpuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334620499</pqid></control><display><type>article</type><title>Molecular Design Strategy of Thermally Activated Delayed Fluorescent Emitters Using CN‐Substituted Imidazopyrazine as a New Electron‐Accepting Unit</title><source>Wiley</source><creator>Kothavale, Shantaram ; Lee, Kyung Hyung ; Lee, Jun Yeob</creator><creatorcontrib>Kothavale, Shantaram ; Lee, Kyung Hyung ; Lee, Jun Yeob</creatorcontrib><description>Thermally activated delayed fluorescence (TADF)‐based organic light‐emitting diodes (OLEDs) have attracted enormous attention recently due to their capability to replace conventional phosphorescent organic light‐emitting diodes for practical applications. In this work, a newly designed CN‐substituted imidazopyrazine moiety was utilized as an electron‐accepting unit in a TADF emitter. Two TADF emitters, 8‐(3‐cyano‐4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (Ac‐CNImPyr) and 8‐(3‐cyano‐4‐(10H‐phenoxazin‐10‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (PXZ‐CNImPyr), were developed based on the CN‐substituted imidazopyrazine acceptor combined with acridine and phenoxazine donor, respectively. A CN‐substituted phenyl spacer was introduced between the donor and acceptor for a sufficiently small singlet‐triplet energy gap (ΔEST) and molecular orbital management. Small ΔEST of 0.07 eV was achieved for the phenoxazine donor‐based PXZ‐CNImPyr emitter. As a result, an organic light‐emitting diode based on the PXZ‐CNImPyr emitter exhibited a high external quantum efficiency of up to 12.7 %, which surpassed the EQE limit of common fluorescent emitters. Hence, the CN‐modified imidazopyrazine unit can be introduced as a new acceptor for further modifications to develop efficient TADF‐based OLEDs. A molecular design strategy utilizing imidazopyrazine as new electron‐accepting unit for two thermally activated delayed fluorescence (TADF) emitters (Ac‐CNImPyr and PXZ‐CNImPyr) is proposed. Especially, the TADF emitter with a strong phenoxazine donor (PXZ‐CNImPyr) exhibited sufficiently small ΔEST to initiate the RISC process and realize a high external quantum efficiency of up to 12.7 %.</description><identifier>ISSN: 1861-4728</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.201901311</identifier><identifier>PMID: 31743615</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>acceptor ; Chemistry ; Diodes ; efficiency ; Emitters ; Emitters (electron) ; Energy gap ; Energy management ; Fluorescence ; imidazopyrazine ; Molecular orbitals ; OLEDs ; Organic light emitting diodes ; Phosphorescence ; Quantum efficiency ; Substitutes ; TADF</subject><ispartof>Chemistry, an Asian journal, 2020-01, Vol.15 (1), p.122-128</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4761-837ed8ada992efe64aefb2f06ee2afb117b06343754690f52072286aef6d2e9b3</citedby><cites>FETCH-LOGICAL-c4761-837ed8ada992efe64aefb2f06ee2afb117b06343754690f52072286aef6d2e9b3</cites><orcidid>0000-0002-7677-0605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31743615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kothavale, Shantaram</creatorcontrib><creatorcontrib>Lee, Kyung Hyung</creatorcontrib><creatorcontrib>Lee, Jun Yeob</creatorcontrib><title>Molecular Design Strategy of Thermally Activated Delayed Fluorescent Emitters Using CN‐Substituted Imidazopyrazine as a New Electron‐Accepting Unit</title><title>Chemistry, an Asian journal</title><addtitle>Chem Asian J</addtitle><description>Thermally activated delayed fluorescence (TADF)‐based organic light‐emitting diodes (OLEDs) have attracted enormous attention recently due to their capability to replace conventional phosphorescent organic light‐emitting diodes for practical applications. In this work, a newly designed CN‐substituted imidazopyrazine moiety was utilized as an electron‐accepting unit in a TADF emitter. Two TADF emitters, 8‐(3‐cyano‐4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (Ac‐CNImPyr) and 8‐(3‐cyano‐4‐(10H‐phenoxazin‐10‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (PXZ‐CNImPyr), were developed based on the CN‐substituted imidazopyrazine acceptor combined with acridine and phenoxazine donor, respectively. A CN‐substituted phenyl spacer was introduced between the donor and acceptor for a sufficiently small singlet‐triplet energy gap (ΔEST) and molecular orbital management. Small ΔEST of 0.07 eV was achieved for the phenoxazine donor‐based PXZ‐CNImPyr emitter. As a result, an organic light‐emitting diode based on the PXZ‐CNImPyr emitter exhibited a high external quantum efficiency of up to 12.7 %, which surpassed the EQE limit of common fluorescent emitters. Hence, the CN‐modified imidazopyrazine unit can be introduced as a new acceptor for further modifications to develop efficient TADF‐based OLEDs. A molecular design strategy utilizing imidazopyrazine as new electron‐accepting unit for two thermally activated delayed fluorescence (TADF) emitters (Ac‐CNImPyr and PXZ‐CNImPyr) is proposed. Especially, the TADF emitter with a strong phenoxazine donor (PXZ‐CNImPyr) exhibited sufficiently small ΔEST to initiate the RISC process and realize a high external quantum efficiency of up to 12.7 %.</description><subject>acceptor</subject><subject>Chemistry</subject><subject>Diodes</subject><subject>efficiency</subject><subject>Emitters</subject><subject>Emitters (electron)</subject><subject>Energy gap</subject><subject>Energy management</subject><subject>Fluorescence</subject><subject>imidazopyrazine</subject><subject>Molecular orbitals</subject><subject>OLEDs</subject><subject>Organic light emitting diodes</subject><subject>Phosphorescence</subject><subject>Quantum efficiency</subject><subject>Substitutes</subject><subject>TADF</subject><issn>1861-4728</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkb1u2zAUhYmiQZMmXTsWBLpkscM_U-IouE5jIE0Hx0A2gZKuXAaU6JJUA2XKI3Tr--VJSsOpC3TpdAniO4f38CD0npIpJYRd6GD0lBGqCOWUvkInNJd0IjJ69_pwZvkxehvCPSEzRlT-Bh1zmgku6ewE_friLNSD1R5_gmA2PV5FryNsRuxafPsNfKetHXFRR_Mj3TcJs3pM89IOzkOooY940ZkYwQe8Dqbf4PnN89PP1VCFaOKw0yw70-hHtx29fjQ9YB2wxjfwgBfp8ehdn_iirmEbd_J1b-IZOmq1DfDuZZ6i9eXidn41uf76eTkvrie1yFK4nGfQ5LrRSjFoQQoNbcVaIgGYbitKs4pILng2E1KRNuXPGMtlomTDQFX8FJ3vfbfefR8gxLIzKZO1ugc3hJJxKgVPP80T-vEf9N4Nvk_bJYoLyYhQKlHTPVV7F4KHttx602k_lpSUu8rKXWXlobIk-PBiO1QdNAf8T0cJUHvgwVgY_2NXFqtl8df8N8FKpuY</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Kothavale, Shantaram</creator><creator>Lee, Kyung Hyung</creator><creator>Lee, Jun Yeob</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7677-0605</orcidid></search><sort><creationdate>20200102</creationdate><title>Molecular Design Strategy of Thermally Activated Delayed Fluorescent Emitters Using CN‐Substituted Imidazopyrazine as a New Electron‐Accepting Unit</title><author>Kothavale, Shantaram ; Lee, Kyung Hyung ; Lee, Jun Yeob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4761-837ed8ada992efe64aefb2f06ee2afb117b06343754690f52072286aef6d2e9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acceptor</topic><topic>Chemistry</topic><topic>Diodes</topic><topic>efficiency</topic><topic>Emitters</topic><topic>Emitters (electron)</topic><topic>Energy gap</topic><topic>Energy management</topic><topic>Fluorescence</topic><topic>imidazopyrazine</topic><topic>Molecular orbitals</topic><topic>OLEDs</topic><topic>Organic light emitting diodes</topic><topic>Phosphorescence</topic><topic>Quantum efficiency</topic><topic>Substitutes</topic><topic>TADF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kothavale, Shantaram</creatorcontrib><creatorcontrib>Lee, Kyung Hyung</creatorcontrib><creatorcontrib>Lee, Jun Yeob</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kothavale, Shantaram</au><au>Lee, Kyung Hyung</au><au>Lee, Jun Yeob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Design Strategy of Thermally Activated Delayed Fluorescent Emitters Using CN‐Substituted Imidazopyrazine as a New Electron‐Accepting Unit</atitle><jtitle>Chemistry, an Asian journal</jtitle><addtitle>Chem Asian J</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>15</volume><issue>1</issue><spage>122</spage><epage>128</epage><pages>122-128</pages><issn>1861-4728</issn><eissn>1861-471X</eissn><abstract>Thermally activated delayed fluorescence (TADF)‐based organic light‐emitting diodes (OLEDs) have attracted enormous attention recently due to their capability to replace conventional phosphorescent organic light‐emitting diodes for practical applications. In this work, a newly designed CN‐substituted imidazopyrazine moiety was utilized as an electron‐accepting unit in a TADF emitter. Two TADF emitters, 8‐(3‐cyano‐4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (Ac‐CNImPyr) and 8‐(3‐cyano‐4‐(10H‐phenoxazin‐10‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (PXZ‐CNImPyr), were developed based on the CN‐substituted imidazopyrazine acceptor combined with acridine and phenoxazine donor, respectively. A CN‐substituted phenyl spacer was introduced between the donor and acceptor for a sufficiently small singlet‐triplet energy gap (ΔEST) and molecular orbital management. Small ΔEST of 0.07 eV was achieved for the phenoxazine donor‐based PXZ‐CNImPyr emitter. As a result, an organic light‐emitting diode based on the PXZ‐CNImPyr emitter exhibited a high external quantum efficiency of up to 12.7 %, which surpassed the EQE limit of common fluorescent emitters. Hence, the CN‐modified imidazopyrazine unit can be introduced as a new acceptor for further modifications to develop efficient TADF‐based OLEDs. A molecular design strategy utilizing imidazopyrazine as new electron‐accepting unit for two thermally activated delayed fluorescence (TADF) emitters (Ac‐CNImPyr and PXZ‐CNImPyr) is proposed. Especially, the TADF emitter with a strong phenoxazine donor (PXZ‐CNImPyr) exhibited sufficiently small ΔEST to initiate the RISC process and realize a high external quantum efficiency of up to 12.7 %.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31743615</pmid><doi>10.1002/asia.201901311</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7677-0605</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-4728
ispartof Chemistry, an Asian journal, 2020-01, Vol.15 (1), p.122-128
issn 1861-4728
1861-471X
language eng
recordid cdi_proquest_miscellaneous_2316430023
source Wiley
subjects acceptor
Chemistry
Diodes
efficiency
Emitters
Emitters (electron)
Energy gap
Energy management
Fluorescence
imidazopyrazine
Molecular orbitals
OLEDs
Organic light emitting diodes
Phosphorescence
Quantum efficiency
Substitutes
TADF
title Molecular Design Strategy of Thermally Activated Delayed Fluorescent Emitters Using CN‐Substituted Imidazopyrazine as a New Electron‐Accepting Unit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Design%20Strategy%20of%20Thermally%20Activated%20Delayed%20Fluorescent%20Emitters%20Using%20CN%E2%80%90Substituted%20Imidazopyrazine%20as%20a%20New%20Electron%E2%80%90Accepting%20Unit&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Kothavale,%20Shantaram&rft.date=2020-01-02&rft.volume=15&rft.issue=1&rft.spage=122&rft.epage=128&rft.pages=122-128&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.201901311&rft_dat=%3Cproquest_cross%3E2316430023%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4761-837ed8ada992efe64aefb2f06ee2afb117b06343754690f52072286aef6d2e9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2334620499&rft_id=info:pmid/31743615&rfr_iscdi=true