Loading…

A space-time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent

Harmful algal blooms (HABs) have been increasing in intensity worldwide, including the western basin of Lake Erie. Substantial efforts have been made to track these blooms using in situ sampling and remote sensing. However, such measurements do not fully capture HAB spatial and temporal dynamics due...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2019-12, Vol.695, p.133776-133776, Article 133776
Main Authors: Fang, Shiqi, Del Giudice, Dario, Scavia, Donald, Binding, Caren E., Bridgeman, Thomas B., Chaffin, Justin D., Evans, Mary Anne, Guinness, Joseph, Johengen, Thomas H., Obenour, Daniel R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-94e7aac05703da5ff8ad0f3a8c0172a843fc00dcf664c0a5d389b088c51afa9b3
cites cdi_FETCH-LOGICAL-c420t-94e7aac05703da5ff8ad0f3a8c0172a843fc00dcf664c0a5d389b088c51afa9b3
container_end_page 133776
container_issue
container_start_page 133776
container_title The Science of the total environment
container_volume 695
creator Fang, Shiqi
Del Giudice, Dario
Scavia, Donald
Binding, Caren E.
Bridgeman, Thomas B.
Chaffin, Justin D.
Evans, Mary Anne
Guinness, Joseph
Johengen, Thomas H.
Obenour, Daniel R.
description Harmful algal blooms (HABs) have been increasing in intensity worldwide, including the western basin of Lake Erie. Substantial efforts have been made to track these blooms using in situ sampling and remote sensing. However, such measurements do not fully capture HAB spatial and temporal dynamics due to the limitations of discrete shipboard sampling over large areas and the effects of clouds and winds on remote sensing estimates. To address these limitations, we develop a space-time geostatistical modeling framework for estimating HAB intensity and extent using chlorophyll a data sampled during the HAB season (June–October) from 2008 to 2017 by five independent monitoring programs. Based on the Bayesian information criterion for model selection, trend variables explain bloom northerly and easterly expansion from Maumee Bay, wind effects over depth, and variability among sampling methods. Cross validation results demonstrate that space-time kriging explains over half of the variability in daily, location-specific chlorophyll observations, on average. Conditional simulations provide, for the first time, comprehensive estimates of overall bloom biomass (based on depth-integrated concentrations) and surface areal extent with quantified uncertainties. These new estimates are contrasted with previous Lake Erie HAB monitoring studies, and deviations among estimates are explored and discussed. Overall, results highlight the importance of maintaining sufficient monitoring coverage to capture bloom dynamics, as well as the benefits of the proposed approach for synthesizing data from multiple monitoring programs to improve estimation accuracy while reducing uncertainty. [Display omitted] •We develop a space-time geostatistical approach for modeling algal bloom variability.•Model synthesizes data from an international suite of monitoring programs.•Trends characterize spatiotemporal patterns and effect of wind mixing on chl-a.•Model simultaneously estimates bloom surface area and overall biomass.•Results show potential to inform Lake Erie algal bloom monitoring design.
doi_str_mv 10.1016/j.scitotenv.2019.133776
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2316433534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969719337179</els_id><sourcerecordid>2316433534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-94e7aac05703da5ff8ad0f3a8c0172a843fc00dcf664c0a5d389b088c51afa9b3</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS1ERZeWvwA-cskyjpPYOa4qSpEqcYGzNbHHxSsnXuxsBf8eL9v2ig-2NP7ezJvH2AcBWwFi-LTfFhvWtNLyuG1BjFshpVLDK7YRWo2NgHZ4zTYAnW7GYVSX7G0pe6hHafGGXUrRtQOA3LBlx8sBLTVrmIk_UCorrqGswWLkc3IUuU-ZH3KacArx3w-nes8VSwtPnv_EPPtj5BgfqmaKKc18CmnGUjgujmOmWqff1ex6zS48xkLvnt4r9uP28_ebu-b-25evN7v7xnYtrM3YkUK00CuQDnvvNTrwErUFoVrUnfQWwFk_DJ0F7J3U4wRa216gx3GSV-zjuW81_utY_Zo5FEsx4kLpWEwrxdBJ2cuuouqM2pxKyeTNIdft8h8jwJzCNnvzErY5hW3OYVfl-6chx2km96J7TrcCuzNAddXHQPnUiBZLLmSyq3Ep_HfIX9rsl00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316433534</pqid></control><display><type>article</type><title>A space-time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent</title><source>ScienceDirect Journals</source><creator>Fang, Shiqi ; Del Giudice, Dario ; Scavia, Donald ; Binding, Caren E. ; Bridgeman, Thomas B. ; Chaffin, Justin D. ; Evans, Mary Anne ; Guinness, Joseph ; Johengen, Thomas H. ; Obenour, Daniel R.</creator><creatorcontrib>Fang, Shiqi ; Del Giudice, Dario ; Scavia, Donald ; Binding, Caren E. ; Bridgeman, Thomas B. ; Chaffin, Justin D. ; Evans, Mary Anne ; Guinness, Joseph ; Johengen, Thomas H. ; Obenour, Daniel R.</creatorcontrib><description>Harmful algal blooms (HABs) have been increasing in intensity worldwide, including the western basin of Lake Erie. Substantial efforts have been made to track these blooms using in situ sampling and remote sensing. However, such measurements do not fully capture HAB spatial and temporal dynamics due to the limitations of discrete shipboard sampling over large areas and the effects of clouds and winds on remote sensing estimates. To address these limitations, we develop a space-time geostatistical modeling framework for estimating HAB intensity and extent using chlorophyll a data sampled during the HAB season (June–October) from 2008 to 2017 by five independent monitoring programs. Based on the Bayesian information criterion for model selection, trend variables explain bloom northerly and easterly expansion from Maumee Bay, wind effects over depth, and variability among sampling methods. Cross validation results demonstrate that space-time kriging explains over half of the variability in daily, location-specific chlorophyll observations, on average. Conditional simulations provide, for the first time, comprehensive estimates of overall bloom biomass (based on depth-integrated concentrations) and surface areal extent with quantified uncertainties. These new estimates are contrasted with previous Lake Erie HAB monitoring studies, and deviations among estimates are explored and discussed. Overall, results highlight the importance of maintaining sufficient monitoring coverage to capture bloom dynamics, as well as the benefits of the proposed approach for synthesizing data from multiple monitoring programs to improve estimation accuracy while reducing uncertainty. [Display omitted] •We develop a space-time geostatistical approach for modeling algal bloom variability.•Model synthesizes data from an international suite of monitoring programs.•Trends characterize spatiotemporal patterns and effect of wind mixing on chl-a.•Model simultaneously estimates bloom surface area and overall biomass.•Results show potential to inform Lake Erie algal bloom monitoring design.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2019.133776</identifier><identifier>PMID: 31426003</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algal biomass and extent ; Harmful algal blooms ; Lake Erie ; Probabilistic estimates ; Space-time geostatistical model</subject><ispartof>The Science of the total environment, 2019-12, Vol.695, p.133776-133776, Article 133776</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-94e7aac05703da5ff8ad0f3a8c0172a843fc00dcf664c0a5d389b088c51afa9b3</citedby><cites>FETCH-LOGICAL-c420t-94e7aac05703da5ff8ad0f3a8c0172a843fc00dcf664c0a5d389b088c51afa9b3</cites><orcidid>0000-0002-2784-8269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31426003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Shiqi</creatorcontrib><creatorcontrib>Del Giudice, Dario</creatorcontrib><creatorcontrib>Scavia, Donald</creatorcontrib><creatorcontrib>Binding, Caren E.</creatorcontrib><creatorcontrib>Bridgeman, Thomas B.</creatorcontrib><creatorcontrib>Chaffin, Justin D.</creatorcontrib><creatorcontrib>Evans, Mary Anne</creatorcontrib><creatorcontrib>Guinness, Joseph</creatorcontrib><creatorcontrib>Johengen, Thomas H.</creatorcontrib><creatorcontrib>Obenour, Daniel R.</creatorcontrib><title>A space-time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Harmful algal blooms (HABs) have been increasing in intensity worldwide, including the western basin of Lake Erie. Substantial efforts have been made to track these blooms using in situ sampling and remote sensing. However, such measurements do not fully capture HAB spatial and temporal dynamics due to the limitations of discrete shipboard sampling over large areas and the effects of clouds and winds on remote sensing estimates. To address these limitations, we develop a space-time geostatistical modeling framework for estimating HAB intensity and extent using chlorophyll a data sampled during the HAB season (June–October) from 2008 to 2017 by five independent monitoring programs. Based on the Bayesian information criterion for model selection, trend variables explain bloom northerly and easterly expansion from Maumee Bay, wind effects over depth, and variability among sampling methods. Cross validation results demonstrate that space-time kriging explains over half of the variability in daily, location-specific chlorophyll observations, on average. Conditional simulations provide, for the first time, comprehensive estimates of overall bloom biomass (based on depth-integrated concentrations) and surface areal extent with quantified uncertainties. These new estimates are contrasted with previous Lake Erie HAB monitoring studies, and deviations among estimates are explored and discussed. Overall, results highlight the importance of maintaining sufficient monitoring coverage to capture bloom dynamics, as well as the benefits of the proposed approach for synthesizing data from multiple monitoring programs to improve estimation accuracy while reducing uncertainty. [Display omitted] •We develop a space-time geostatistical approach for modeling algal bloom variability.•Model synthesizes data from an international suite of monitoring programs.•Trends characterize spatiotemporal patterns and effect of wind mixing on chl-a.•Model simultaneously estimates bloom surface area and overall biomass.•Results show potential to inform Lake Erie algal bloom monitoring design.</description><subject>Algal biomass and extent</subject><subject>Harmful algal blooms</subject><subject>Lake Erie</subject><subject>Probabilistic estimates</subject><subject>Space-time geostatistical model</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhS1ERZeWvwA-cskyjpPYOa4qSpEqcYGzNbHHxSsnXuxsBf8eL9v2ig-2NP7ezJvH2AcBWwFi-LTfFhvWtNLyuG1BjFshpVLDK7YRWo2NgHZ4zTYAnW7GYVSX7G0pe6hHafGGXUrRtQOA3LBlx8sBLTVrmIk_UCorrqGswWLkc3IUuU-ZH3KacArx3w-nes8VSwtPnv_EPPtj5BgfqmaKKc18CmnGUjgujmOmWqff1ex6zS48xkLvnt4r9uP28_ebu-b-25evN7v7xnYtrM3YkUK00CuQDnvvNTrwErUFoVrUnfQWwFk_DJ0F7J3U4wRa216gx3GSV-zjuW81_utY_Zo5FEsx4kLpWEwrxdBJ2cuuouqM2pxKyeTNIdft8h8jwJzCNnvzErY5hW3OYVfl-6chx2km96J7TrcCuzNAddXHQPnUiBZLLmSyq3Ep_HfIX9rsl00</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Fang, Shiqi</creator><creator>Del Giudice, Dario</creator><creator>Scavia, Donald</creator><creator>Binding, Caren E.</creator><creator>Bridgeman, Thomas B.</creator><creator>Chaffin, Justin D.</creator><creator>Evans, Mary Anne</creator><creator>Guinness, Joseph</creator><creator>Johengen, Thomas H.</creator><creator>Obenour, Daniel R.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2784-8269</orcidid></search><sort><creationdate>20191210</creationdate><title>A space-time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent</title><author>Fang, Shiqi ; Del Giudice, Dario ; Scavia, Donald ; Binding, Caren E. ; Bridgeman, Thomas B. ; Chaffin, Justin D. ; Evans, Mary Anne ; Guinness, Joseph ; Johengen, Thomas H. ; Obenour, Daniel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-94e7aac05703da5ff8ad0f3a8c0172a843fc00dcf664c0a5d389b088c51afa9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algal biomass and extent</topic><topic>Harmful algal blooms</topic><topic>Lake Erie</topic><topic>Probabilistic estimates</topic><topic>Space-time geostatistical model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Shiqi</creatorcontrib><creatorcontrib>Del Giudice, Dario</creatorcontrib><creatorcontrib>Scavia, Donald</creatorcontrib><creatorcontrib>Binding, Caren E.</creatorcontrib><creatorcontrib>Bridgeman, Thomas B.</creatorcontrib><creatorcontrib>Chaffin, Justin D.</creatorcontrib><creatorcontrib>Evans, Mary Anne</creatorcontrib><creatorcontrib>Guinness, Joseph</creatorcontrib><creatorcontrib>Johengen, Thomas H.</creatorcontrib><creatorcontrib>Obenour, Daniel R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Shiqi</au><au>Del Giudice, Dario</au><au>Scavia, Donald</au><au>Binding, Caren E.</au><au>Bridgeman, Thomas B.</au><au>Chaffin, Justin D.</au><au>Evans, Mary Anne</au><au>Guinness, Joseph</au><au>Johengen, Thomas H.</au><au>Obenour, Daniel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A space-time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>695</volume><spage>133776</spage><epage>133776</epage><pages>133776-133776</pages><artnum>133776</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Harmful algal blooms (HABs) have been increasing in intensity worldwide, including the western basin of Lake Erie. Substantial efforts have been made to track these blooms using in situ sampling and remote sensing. However, such measurements do not fully capture HAB spatial and temporal dynamics due to the limitations of discrete shipboard sampling over large areas and the effects of clouds and winds on remote sensing estimates. To address these limitations, we develop a space-time geostatistical modeling framework for estimating HAB intensity and extent using chlorophyll a data sampled during the HAB season (June–October) from 2008 to 2017 by five independent monitoring programs. Based on the Bayesian information criterion for model selection, trend variables explain bloom northerly and easterly expansion from Maumee Bay, wind effects over depth, and variability among sampling methods. Cross validation results demonstrate that space-time kriging explains over half of the variability in daily, location-specific chlorophyll observations, on average. Conditional simulations provide, for the first time, comprehensive estimates of overall bloom biomass (based on depth-integrated concentrations) and surface areal extent with quantified uncertainties. These new estimates are contrasted with previous Lake Erie HAB monitoring studies, and deviations among estimates are explored and discussed. Overall, results highlight the importance of maintaining sufficient monitoring coverage to capture bloom dynamics, as well as the benefits of the proposed approach for synthesizing data from multiple monitoring programs to improve estimation accuracy while reducing uncertainty. [Display omitted] •We develop a space-time geostatistical approach for modeling algal bloom variability.•Model synthesizes data from an international suite of monitoring programs.•Trends characterize spatiotemporal patterns and effect of wind mixing on chl-a.•Model simultaneously estimates bloom surface area and overall biomass.•Results show potential to inform Lake Erie algal bloom monitoring design.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31426003</pmid><doi>10.1016/j.scitotenv.2019.133776</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2784-8269</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2019-12, Vol.695, p.133776-133776, Article 133776
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_2316433534
source ScienceDirect Journals
subjects Algal biomass and extent
Harmful algal blooms
Lake Erie
Probabilistic estimates
Space-time geostatistical model
title A space-time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20space-time%20geostatistical%20model%20for%20probabilistic%20estimation%20of%20harmful%20algal%20bloom%20biomass%20and%20areal%20extent&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Fang,%20Shiqi&rft.date=2019-12-10&rft.volume=695&rft.spage=133776&rft.epage=133776&rft.pages=133776-133776&rft.artnum=133776&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2019.133776&rft_dat=%3Cproquest_cross%3E2316433534%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-94e7aac05703da5ff8ad0f3a8c0172a843fc00dcf664c0a5d389b088c51afa9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2316433534&rft_id=info:pmid/31426003&rfr_iscdi=true