Loading…

Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation

Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2021-05, Vol.43 (5), p.1530-1545
Main Authors: Su, Jinsong, Zeng, Jiali, Xie, Jun, Wen, Huating, Yin, Yongjing, Liu, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23
cites cdi_FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23
container_end_page 1545
container_issue 5
container_start_page 1530
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 43
creator Su, Jinsong
Zeng, Jiali
Xie, Jun
Wen, Huating
Yin, Yongjing
Liu, Yang
description Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in the same sentence are not well distinguished, while intuitively, they are related to the sentence domain to varying degrees and thus should exert different effects on the multi-domain NMT model. In this article, we are committed to distinguishing and exploiting different word-level domain contexts for multi-domain NMT. For this purpose, we adopt multi-task learning to jointly model NMT and monolingual attention-based domain classification tasks, improving the NMT model in two ways: 1) One domain classifier and one adversarial domain classifier are introduced to conduct domain classifications of input sentences. During this process, two generated gating vectors are used to produce domain-specific and domain-shared annotations for decoder; 2) We equip decoder with an attentional domain classifier. Then, the derived attentional weights are utilized to refine the model training via word-level cost weighting, so that the impacts of target words can be discriminated by their relevance to sentence domain. Experimental results on several multi-domain translations demonstrate the effectiveness of our model.
doi_str_mv 10.1109/TPAMI.2019.2954406
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317583926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8907409</ieee_id><sourcerecordid>2509290580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23</originalsourceid><addsrcrecordid>eNpdkLFu2zAQhokgReO4fYEECARk6SL3SIoSOQa2mxiw2w4uOhKMeEpoyKRDSkH69pVj10OnG-77f9x9hFxRmFAK6uv6591qMWFA1YQpURRQnpERVVzlXHB1TkZAS5ZLyeQFuUxpA0ALAfwjueC0EpQxMSJ6_rZrQ3T-KZu5VEe3dd507hWz3yHafImv2GazsDXOZ9PgO3zrUtaEmK36tnP5cfMd-2jabGXqZ-cxW0fjUzvUBP-JfGhMm_DzcY7Jr2_z9fQhX_64X0zvlnld0KrLS2tACqMeKS15rYyxvKBcmaapLZeFqqBivJHW0Io1ylgrbEV5jaIsAUXN-Jh8OfTuYnjpMXV6O7yDbWs8hj5ptn9ZcsXKAb39D92EPvrhOs0EKKZASBgodqDqGFKK2OjdIMfEP5qC3uvX7_r1Xr8-6h9CN8fq_nGL9hT553sArg-AQ8TTWiqoClD8L2B2iTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509290580</pqid></control><display><type>article</type><title>Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation</title><source>IEEE Xplore (Online service)</source><creator>Su, Jinsong ; Zeng, Jiali ; Xie, Jun ; Wen, Huating ; Yin, Yongjing ; Liu, Yang</creator><creatorcontrib>Su, Jinsong ; Zeng, Jiali ; Xie, Jun ; Wen, Huating ; Yin, Yongjing ; Liu, Yang</creatorcontrib><description>Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in the same sentence are not well distinguished, while intuitively, they are related to the sentence domain to varying degrees and thus should exert different effects on the multi-domain NMT model. In this article, we are committed to distinguishing and exploiting different word-level domain contexts for multi-domain NMT. For this purpose, we adopt multi-task learning to jointly model NMT and monolingual attention-based domain classification tasks, improving the NMT model in two ways: 1) One domain classifier and one adversarial domain classifier are introduced to conduct domain classifications of input sentences. During this process, two generated gating vectors are used to produce domain-specific and domain-shared annotations for decoder; 2) We equip decoder with an attentional domain classifier. Then, the derived attentional weights are utilized to refine the model training via word-level cost weighting, so that the impacts of target words can be discriminated by their relevance to sentence domain. Experimental results on several multi-domain translations demonstrate the effectiveness of our model.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2019.2954406</identifier><identifier>PMID: 31751225</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; adversarial training ; Annotations ; Classifiers ; Context modeling ; Decoding ; Machine translation ; Multi-domain neural machine translation ; Semantics ; Sentences ; Task analysis ; Training ; word-level context</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2021-05, Vol.43 (5), p.1530-1545</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23</citedby><cites>FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23</cites><orcidid>0000-0002-3087-242X ; 0000-0001-5606-7122 ; 0000-0003-0808-9890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8907409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31751225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Jinsong</creatorcontrib><creatorcontrib>Zeng, Jiali</creatorcontrib><creatorcontrib>Xie, Jun</creatorcontrib><creatorcontrib>Wen, Huating</creatorcontrib><creatorcontrib>Yin, Yongjing</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in the same sentence are not well distinguished, while intuitively, they are related to the sentence domain to varying degrees and thus should exert different effects on the multi-domain NMT model. In this article, we are committed to distinguishing and exploiting different word-level domain contexts for multi-domain NMT. For this purpose, we adopt multi-task learning to jointly model NMT and monolingual attention-based domain classification tasks, improving the NMT model in two ways: 1) One domain classifier and one adversarial domain classifier are introduced to conduct domain classifications of input sentences. During this process, two generated gating vectors are used to produce domain-specific and domain-shared annotations for decoder; 2) We equip decoder with an attentional domain classifier. Then, the derived attentional weights are utilized to refine the model training via word-level cost weighting, so that the impacts of target words can be discriminated by their relevance to sentence domain. Experimental results on several multi-domain translations demonstrate the effectiveness of our model.</description><subject>Adaptation models</subject><subject>adversarial training</subject><subject>Annotations</subject><subject>Classifiers</subject><subject>Context modeling</subject><subject>Decoding</subject><subject>Machine translation</subject><subject>Multi-domain neural machine translation</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Task analysis</subject><subject>Training</subject><subject>word-level context</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkLFu2zAQhokgReO4fYEECARk6SL3SIoSOQa2mxiw2w4uOhKMeEpoyKRDSkH69pVj10OnG-77f9x9hFxRmFAK6uv6591qMWFA1YQpURRQnpERVVzlXHB1TkZAS5ZLyeQFuUxpA0ALAfwjueC0EpQxMSJ6_rZrQ3T-KZu5VEe3dd507hWz3yHafImv2GazsDXOZ9PgO3zrUtaEmK36tnP5cfMd-2jabGXqZ-cxW0fjUzvUBP-JfGhMm_DzcY7Jr2_z9fQhX_64X0zvlnld0KrLS2tACqMeKS15rYyxvKBcmaapLZeFqqBivJHW0Io1ylgrbEV5jaIsAUXN-Jh8OfTuYnjpMXV6O7yDbWs8hj5ptn9ZcsXKAb39D92EPvrhOs0EKKZASBgodqDqGFKK2OjdIMfEP5qC3uvX7_r1Xr8-6h9CN8fq_nGL9hT553sArg-AQ8TTWiqoClD8L2B2iTE</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Su, Jinsong</creator><creator>Zeng, Jiali</creator><creator>Xie, Jun</creator><creator>Wen, Huating</creator><creator>Yin, Yongjing</creator><creator>Liu, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3087-242X</orcidid><orcidid>https://orcid.org/0000-0001-5606-7122</orcidid><orcidid>https://orcid.org/0000-0003-0808-9890</orcidid></search><sort><creationdate>20210501</creationdate><title>Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation</title><author>Su, Jinsong ; Zeng, Jiali ; Xie, Jun ; Wen, Huating ; Yin, Yongjing ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>adversarial training</topic><topic>Annotations</topic><topic>Classifiers</topic><topic>Context modeling</topic><topic>Decoding</topic><topic>Machine translation</topic><topic>Multi-domain neural machine translation</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Task analysis</topic><topic>Training</topic><topic>word-level context</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Jinsong</creatorcontrib><creatorcontrib>Zeng, Jiali</creatorcontrib><creatorcontrib>Xie, Jun</creatorcontrib><creatorcontrib>Wen, Huating</creatorcontrib><creatorcontrib>Yin, Yongjing</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Jinsong</au><au>Zeng, Jiali</au><au>Xie, Jun</au><au>Wen, Huating</au><au>Yin, Yongjing</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>43</volume><issue>5</issue><spage>1530</spage><epage>1545</epage><pages>1530-1545</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in the same sentence are not well distinguished, while intuitively, they are related to the sentence domain to varying degrees and thus should exert different effects on the multi-domain NMT model. In this article, we are committed to distinguishing and exploiting different word-level domain contexts for multi-domain NMT. For this purpose, we adopt multi-task learning to jointly model NMT and monolingual attention-based domain classification tasks, improving the NMT model in two ways: 1) One domain classifier and one adversarial domain classifier are introduced to conduct domain classifications of input sentences. During this process, two generated gating vectors are used to produce domain-specific and domain-shared annotations for decoder; 2) We equip decoder with an attentional domain classifier. Then, the derived attentional weights are utilized to refine the model training via word-level cost weighting, so that the impacts of target words can be discriminated by their relevance to sentence domain. Experimental results on several multi-domain translations demonstrate the effectiveness of our model.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31751225</pmid><doi>10.1109/TPAMI.2019.2954406</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3087-242X</orcidid><orcidid>https://orcid.org/0000-0001-5606-7122</orcidid><orcidid>https://orcid.org/0000-0003-0808-9890</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2021-05, Vol.43 (5), p.1530-1545
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_2317583926
source IEEE Xplore (Online service)
subjects Adaptation models
adversarial training
Annotations
Classifiers
Context modeling
Decoding
Machine translation
Multi-domain neural machine translation
Semantics
Sentences
Task analysis
Training
word-level context
title Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Discriminative%20Word-Level%20Domain%20Contexts%20for%20Multi-Domain%20Neural%20Machine%20Translation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Su,%20Jinsong&rft.date=2021-05-01&rft.volume=43&rft.issue=5&rft.spage=1530&rft.epage=1545&rft.pages=1530-1545&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2019.2954406&rft_dat=%3Cproquest_ieee_%3E2509290580%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509290580&rft_id=info:pmid/31751225&rft_ieee_id=8907409&rfr_iscdi=true