Loading…
Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation
Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2021-05, Vol.43 (5), p.1530-1545 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23 |
container_end_page | 1545 |
container_issue | 5 |
container_start_page | 1530 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 43 |
creator | Su, Jinsong Zeng, Jiali Xie, Jun Wen, Huating Yin, Yongjing Liu, Yang |
description | Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in the same sentence are not well distinguished, while intuitively, they are related to the sentence domain to varying degrees and thus should exert different effects on the multi-domain NMT model. In this article, we are committed to distinguishing and exploiting different word-level domain contexts for multi-domain NMT. For this purpose, we adopt multi-task learning to jointly model NMT and monolingual attention-based domain classification tasks, improving the NMT model in two ways: 1) One domain classifier and one adversarial domain classifier are introduced to conduct domain classifications of input sentences. During this process, two generated gating vectors are used to produce domain-specific and domain-shared annotations for decoder; 2) We equip decoder with an attentional domain classifier. Then, the derived attentional weights are utilized to refine the model training via word-level cost weighting, so that the impacts of target words can be discriminated by their relevance to sentence domain. Experimental results on several multi-domain translations demonstrate the effectiveness of our model. |
doi_str_mv | 10.1109/TPAMI.2019.2954406 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317583926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8907409</ieee_id><sourcerecordid>2509290580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23</originalsourceid><addsrcrecordid>eNpdkLFu2zAQhokgReO4fYEECARk6SL3SIoSOQa2mxiw2w4uOhKMeEpoyKRDSkH69pVj10OnG-77f9x9hFxRmFAK6uv6591qMWFA1YQpURRQnpERVVzlXHB1TkZAS5ZLyeQFuUxpA0ALAfwjueC0EpQxMSJ6_rZrQ3T-KZu5VEe3dd507hWz3yHafImv2GazsDXOZ9PgO3zrUtaEmK36tnP5cfMd-2jabGXqZ-cxW0fjUzvUBP-JfGhMm_DzcY7Jr2_z9fQhX_64X0zvlnld0KrLS2tACqMeKS15rYyxvKBcmaapLZeFqqBivJHW0Io1ylgrbEV5jaIsAUXN-Jh8OfTuYnjpMXV6O7yDbWs8hj5ptn9ZcsXKAb39D92EPvrhOs0EKKZASBgodqDqGFKK2OjdIMfEP5qC3uvX7_r1Xr8-6h9CN8fq_nGL9hT553sArg-AQ8TTWiqoClD8L2B2iTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509290580</pqid></control><display><type>article</type><title>Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation</title><source>IEEE Xplore (Online service)</source><creator>Su, Jinsong ; Zeng, Jiali ; Xie, Jun ; Wen, Huating ; Yin, Yongjing ; Liu, Yang</creator><creatorcontrib>Su, Jinsong ; Zeng, Jiali ; Xie, Jun ; Wen, Huating ; Yin, Yongjing ; Liu, Yang</creatorcontrib><description>Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in the same sentence are not well distinguished, while intuitively, they are related to the sentence domain to varying degrees and thus should exert different effects on the multi-domain NMT model. In this article, we are committed to distinguishing and exploiting different word-level domain contexts for multi-domain NMT. For this purpose, we adopt multi-task learning to jointly model NMT and monolingual attention-based domain classification tasks, improving the NMT model in two ways: 1) One domain classifier and one adversarial domain classifier are introduced to conduct domain classifications of input sentences. During this process, two generated gating vectors are used to produce domain-specific and domain-shared annotations for decoder; 2) We equip decoder with an attentional domain classifier. Then, the derived attentional weights are utilized to refine the model training via word-level cost weighting, so that the impacts of target words can be discriminated by their relevance to sentence domain. Experimental results on several multi-domain translations demonstrate the effectiveness of our model.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2019.2954406</identifier><identifier>PMID: 31751225</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; adversarial training ; Annotations ; Classifiers ; Context modeling ; Decoding ; Machine translation ; Multi-domain neural machine translation ; Semantics ; Sentences ; Task analysis ; Training ; word-level context</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2021-05, Vol.43 (5), p.1530-1545</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23</citedby><cites>FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23</cites><orcidid>0000-0002-3087-242X ; 0000-0001-5606-7122 ; 0000-0003-0808-9890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8907409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31751225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Jinsong</creatorcontrib><creatorcontrib>Zeng, Jiali</creatorcontrib><creatorcontrib>Xie, Jun</creatorcontrib><creatorcontrib>Wen, Huating</creatorcontrib><creatorcontrib>Yin, Yongjing</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in the same sentence are not well distinguished, while intuitively, they are related to the sentence domain to varying degrees and thus should exert different effects on the multi-domain NMT model. In this article, we are committed to distinguishing and exploiting different word-level domain contexts for multi-domain NMT. For this purpose, we adopt multi-task learning to jointly model NMT and monolingual attention-based domain classification tasks, improving the NMT model in two ways: 1) One domain classifier and one adversarial domain classifier are introduced to conduct domain classifications of input sentences. During this process, two generated gating vectors are used to produce domain-specific and domain-shared annotations for decoder; 2) We equip decoder with an attentional domain classifier. Then, the derived attentional weights are utilized to refine the model training via word-level cost weighting, so that the impacts of target words can be discriminated by their relevance to sentence domain. Experimental results on several multi-domain translations demonstrate the effectiveness of our model.</description><subject>Adaptation models</subject><subject>adversarial training</subject><subject>Annotations</subject><subject>Classifiers</subject><subject>Context modeling</subject><subject>Decoding</subject><subject>Machine translation</subject><subject>Multi-domain neural machine translation</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Task analysis</subject><subject>Training</subject><subject>word-level context</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkLFu2zAQhokgReO4fYEECARk6SL3SIoSOQa2mxiw2w4uOhKMeEpoyKRDSkH69pVj10OnG-77f9x9hFxRmFAK6uv6591qMWFA1YQpURRQnpERVVzlXHB1TkZAS5ZLyeQFuUxpA0ALAfwjueC0EpQxMSJ6_rZrQ3T-KZu5VEe3dd507hWz3yHafImv2GazsDXOZ9PgO3zrUtaEmK36tnP5cfMd-2jabGXqZ-cxW0fjUzvUBP-JfGhMm_DzcY7Jr2_z9fQhX_64X0zvlnld0KrLS2tACqMeKS15rYyxvKBcmaapLZeFqqBivJHW0Io1ylgrbEV5jaIsAUXN-Jh8OfTuYnjpMXV6O7yDbWs8hj5ptn9ZcsXKAb39D92EPvrhOs0EKKZASBgodqDqGFKK2OjdIMfEP5qC3uvX7_r1Xr8-6h9CN8fq_nGL9hT553sArg-AQ8TTWiqoClD8L2B2iTE</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Su, Jinsong</creator><creator>Zeng, Jiali</creator><creator>Xie, Jun</creator><creator>Wen, Huating</creator><creator>Yin, Yongjing</creator><creator>Liu, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3087-242X</orcidid><orcidid>https://orcid.org/0000-0001-5606-7122</orcidid><orcidid>https://orcid.org/0000-0003-0808-9890</orcidid></search><sort><creationdate>20210501</creationdate><title>Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation</title><author>Su, Jinsong ; Zeng, Jiali ; Xie, Jun ; Wen, Huating ; Yin, Yongjing ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation models</topic><topic>adversarial training</topic><topic>Annotations</topic><topic>Classifiers</topic><topic>Context modeling</topic><topic>Decoding</topic><topic>Machine translation</topic><topic>Multi-domain neural machine translation</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Task analysis</topic><topic>Training</topic><topic>word-level context</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Jinsong</creatorcontrib><creatorcontrib>Zeng, Jiali</creatorcontrib><creatorcontrib>Xie, Jun</creatorcontrib><creatorcontrib>Wen, Huating</creatorcontrib><creatorcontrib>Yin, Yongjing</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Jinsong</au><au>Zeng, Jiali</au><au>Xie, Jun</au><au>Wen, Huating</au><au>Yin, Yongjing</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>43</volume><issue>5</issue><spage>1530</spage><epage>1545</epage><pages>1530-1545</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Owing to its practical significance, multi-domain Neural Machine Translation (NMT) has attracted much attention recently. Recent studies mainly focus on constructing a unified NMT model with mixed-domain training corpora to switch translation between different domains. In these models, the words in the same sentence are not well distinguished, while intuitively, they are related to the sentence domain to varying degrees and thus should exert different effects on the multi-domain NMT model. In this article, we are committed to distinguishing and exploiting different word-level domain contexts for multi-domain NMT. For this purpose, we adopt multi-task learning to jointly model NMT and monolingual attention-based domain classification tasks, improving the NMT model in two ways: 1) One domain classifier and one adversarial domain classifier are introduced to conduct domain classifications of input sentences. During this process, two generated gating vectors are used to produce domain-specific and domain-shared annotations for decoder; 2) We equip decoder with an attentional domain classifier. Then, the derived attentional weights are utilized to refine the model training via word-level cost weighting, so that the impacts of target words can be discriminated by their relevance to sentence domain. Experimental results on several multi-domain translations demonstrate the effectiveness of our model.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31751225</pmid><doi>10.1109/TPAMI.2019.2954406</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3087-242X</orcidid><orcidid>https://orcid.org/0000-0001-5606-7122</orcidid><orcidid>https://orcid.org/0000-0003-0808-9890</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2021-05, Vol.43 (5), p.1530-1545 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_miscellaneous_2317583926 |
source | IEEE Xplore (Online service) |
subjects | Adaptation models adversarial training Annotations Classifiers Context modeling Decoding Machine translation Multi-domain neural machine translation Semantics Sentences Task analysis Training word-level context |
title | Exploring Discriminative Word-Level Domain Contexts for Multi-Domain Neural Machine Translation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Discriminative%20Word-Level%20Domain%20Contexts%20for%20Multi-Domain%20Neural%20Machine%20Translation&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Su,%20Jinsong&rft.date=2021-05-01&rft.volume=43&rft.issue=5&rft.spage=1530&rft.epage=1545&rft.pages=1530-1545&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2019.2954406&rft_dat=%3Cproquest_ieee_%3E2509290580%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-6da085a9b1163c9aad34139affcd384970723f8da172f9add5d713ce5660e5c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2509290580&rft_id=info:pmid/31751225&rft_ieee_id=8907409&rfr_iscdi=true |