Loading…

Lyophilization of human amniotic fluid is feasible without affecting biological activity

Background Fetal swallowing of human amniotic fluid (hAF) containing trophic factors (TFs) promotes gastrointestinal tract (GIT) development. Preterm birth interrupts hAF swallowing, which may increase the risk of necrotizing enterocolitis (NEC). Postnatally, it is difficult to replicate fetal swall...

Full description

Saved in:
Bibliographic Details
Published in:Pediatric research 2020-04, Vol.87 (5), p.847-852
Main Authors: Coon, John I., Jain, Sangeeta, Sepuru, Krishna M., Chung, Yerin, Mohankumar, Krishnan, Rajarathnam, Krishna, Jain, Sunil K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Fetal swallowing of human amniotic fluid (hAF) containing trophic factors (TFs) promotes gastrointestinal tract (GIT) development. Preterm birth interrupts hAF swallowing, which may increase the risk of necrotizing enterocolitis (NEC). Postnatally, it is difficult to replicate fetal swallowing of hAF due to volume. We aimed to evaluate whether hAF lyophilization is feasible and its effect on hAF-borne TFs. Methods We collected hAF ( n  = 16) from uncomplicated pregnancies. hAF was divided into three groups: unprocessed control (C), concentration by microfiltration (F), and by dialysis and lyophilization (L). EGF, HGF, GM-CSF, and TGF-α were measured in each group by multiplex assay. Bioavailability of TFs was measured by proliferation and LPS-induced IL-8 production by intestinal epithelial cells FHs74. Results After dialysis/lyophilization, GM-CSF and TGF-α were preserved with partial loss of EGF and HGF. hAF increased cell proliferation and reduced LPS-induced IL-8 production compared to medium alone. Compared to control, dialysis/lyophilization and filtration of hAF increased FHs74 cell proliferation ( p  
ISSN:0031-3998
1530-0447
DOI:10.1038/s41390-019-0632-0