Loading…

In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes

Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (“bioactivity”) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemic...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2020-01, Vol.102, p.440-457
Main Authors: Maazouz, Yassine, Rentsch, Iris, Lu, Bin, Santoni, Bastien Le Gars, Doebelin, Nicola, Bohner, Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303
cites cdi_FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303
container_end_page 457
container_issue
container_start_page 440
container_title Acta biomaterialia
container_volume 102
creator Maazouz, Yassine
Rentsch, Iris
Lu, Bin
Santoni, Bastien Le Gars
Doebelin, Nicola
Bohner, Marc
description Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (“bioactivity”) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of β-Tricalcium Phosphate (β-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the β-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs. Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of β-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials. [Display omitted]
doi_str_mv 10.1016/j.actbio.2019.11.035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317594592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706119307858</els_id><sourcerecordid>2317594592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303</originalsourceid><addsrcrecordid>eNp90ctu1TAQBuAIgWgpvAFCltiwSfAlduINEqq4VKrEBtaW7UxOfJTYB1-K-lo8CM-Eo1NYsGDlWXwztudvmpcEdwQT8fbYaZuNCx3FRHaEdJjxR80lGYexHbgYH9d66Gk7YEEummcpHTFmI6Hj0-aCkSo4p5fNeuPRncsxoA10KhE28BmFGeUFkF1gc1avtdD-AAkFa0uMzh_QD5cX59Gvn22OO7GubOi0hHRadAZkggd0iHrOKBWTssslQ3rePJn1muDFw3nVfPv44ev15_b2y6eb6_e3re2ZyO0kjZknLUZKONVCayHGYdCTHaQG0_eYGCk15xjLkWFsMGczmw0WArTmDLOr5s157imG7wVSVptLFtZVewglKbr_X_Zc0kpf_0OPoURfX1cVx5IOgu6qPysbQ0oRZnWKbtPxXhGs9jTUUZ3TUHsaihBV06htrx6GF7PB9Lfpz_oreHcGULdx5yCqZB14C5OLYLOagvv_Db8BsX2eyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350927622</pqid></control><display><type>article</type><title>In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Maazouz, Yassine ; Rentsch, Iris ; Lu, Bin ; Santoni, Bastien Le Gars ; Doebelin, Nicola ; Bohner, Marc</creator><creatorcontrib>Maazouz, Yassine ; Rentsch, Iris ; Lu, Bin ; Santoni, Bastien Le Gars ; Doebelin, Nicola ; Bohner, Marc</creatorcontrib><description>Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (“bioactivity”) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of β-Tricalcium Phosphate (β-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the β-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs. Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of β-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2019.11.035</identifier><identifier>PMID: 31756552</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Beta-tricalcium phosphate ; Bioactivity ; Biological activity ; Biomedical materials ; Body fluids ; Bone graft substitute ; Bone grafts ; Bone Substitutes - chemistry ; Calcium ; Calcium phosphate ; Calcium phosphates ; Calcium Phosphates - chemistry ; Computer simulation ; Concentration gradient ; Design of experiments ; Ectopic bone formation ; Factorial design ; Grafting ; Grafts ; Granular materials ; Heterotopic bone formation ; In vitro methods and tests ; Kinetics ; Local pH ; Microporosity ; Mineralization ; Organic chemistry ; Osteogenesis ; Osteoinductivity ; Particle Size ; pH effects ; Phosphate ; Phosphates ; Pores ; Porosity ; Process parameters ; Prostheses and Implants ; Skin &amp; tissue grafts ; Solubility ; Substitute bone ; Surgical implants ; Tricalcium phosphate</subject><ispartof>Acta biomaterialia, 2020-01, Vol.102, p.440-457</ispartof><rights>2019 Acta Materialia Inc.</rights><rights>Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Jan 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303</citedby><cites>FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303</cites><orcidid>0000-0002-5079-3286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31756552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maazouz, Yassine</creatorcontrib><creatorcontrib>Rentsch, Iris</creatorcontrib><creatorcontrib>Lu, Bin</creatorcontrib><creatorcontrib>Santoni, Bastien Le Gars</creatorcontrib><creatorcontrib>Doebelin, Nicola</creatorcontrib><creatorcontrib>Bohner, Marc</creatorcontrib><title>In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (“bioactivity”) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of β-Tricalcium Phosphate (β-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the β-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs. Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of β-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials. [Display omitted]</description><subject>Beta-tricalcium phosphate</subject><subject>Bioactivity</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bone graft substitute</subject><subject>Bone grafts</subject><subject>Bone Substitutes - chemistry</subject><subject>Calcium</subject><subject>Calcium phosphate</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Computer simulation</subject><subject>Concentration gradient</subject><subject>Design of experiments</subject><subject>Ectopic bone formation</subject><subject>Factorial design</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Granular materials</subject><subject>Heterotopic bone formation</subject><subject>In vitro methods and tests</subject><subject>Kinetics</subject><subject>Local pH</subject><subject>Microporosity</subject><subject>Mineralization</subject><subject>Organic chemistry</subject><subject>Osteogenesis</subject><subject>Osteoinductivity</subject><subject>Particle Size</subject><subject>pH effects</subject><subject>Phosphate</subject><subject>Phosphates</subject><subject>Pores</subject><subject>Porosity</subject><subject>Process parameters</subject><subject>Prostheses and Implants</subject><subject>Skin &amp; tissue grafts</subject><subject>Solubility</subject><subject>Substitute bone</subject><subject>Surgical implants</subject><subject>Tricalcium phosphate</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90ctu1TAQBuAIgWgpvAFCltiwSfAlduINEqq4VKrEBtaW7UxOfJTYB1-K-lo8CM-Eo1NYsGDlWXwztudvmpcEdwQT8fbYaZuNCx3FRHaEdJjxR80lGYexHbgYH9d66Gk7YEEummcpHTFmI6Hj0-aCkSo4p5fNeuPRncsxoA10KhE28BmFGeUFkF1gc1avtdD-AAkFa0uMzh_QD5cX59Gvn22OO7GubOi0hHRadAZkggd0iHrOKBWTssslQ3rePJn1muDFw3nVfPv44ev15_b2y6eb6_e3re2ZyO0kjZknLUZKONVCayHGYdCTHaQG0_eYGCk15xjLkWFsMGczmw0WArTmDLOr5s157imG7wVSVptLFtZVewglKbr_X_Zc0kpf_0OPoURfX1cVx5IOgu6qPysbQ0oRZnWKbtPxXhGs9jTUUZ3TUHsaihBV06htrx6GF7PB9Lfpz_oreHcGULdx5yCqZB14C5OLYLOagvv_Db8BsX2eyA</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Maazouz, Yassine</creator><creator>Rentsch, Iris</creator><creator>Lu, Bin</creator><creator>Santoni, Bastien Le Gars</creator><creator>Doebelin, Nicola</creator><creator>Bohner, Marc</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5079-3286</orcidid></search><sort><creationdate>20200115</creationdate><title>In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes</title><author>Maazouz, Yassine ; Rentsch, Iris ; Lu, Bin ; Santoni, Bastien Le Gars ; Doebelin, Nicola ; Bohner, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beta-tricalcium phosphate</topic><topic>Bioactivity</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bone graft substitute</topic><topic>Bone grafts</topic><topic>Bone Substitutes - chemistry</topic><topic>Calcium</topic><topic>Calcium phosphate</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Computer simulation</topic><topic>Concentration gradient</topic><topic>Design of experiments</topic><topic>Ectopic bone formation</topic><topic>Factorial design</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Granular materials</topic><topic>Heterotopic bone formation</topic><topic>In vitro methods and tests</topic><topic>Kinetics</topic><topic>Local pH</topic><topic>Microporosity</topic><topic>Mineralization</topic><topic>Organic chemistry</topic><topic>Osteogenesis</topic><topic>Osteoinductivity</topic><topic>Particle Size</topic><topic>pH effects</topic><topic>Phosphate</topic><topic>Phosphates</topic><topic>Pores</topic><topic>Porosity</topic><topic>Process parameters</topic><topic>Prostheses and Implants</topic><topic>Skin &amp; tissue grafts</topic><topic>Solubility</topic><topic>Substitute bone</topic><topic>Surgical implants</topic><topic>Tricalcium phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maazouz, Yassine</creatorcontrib><creatorcontrib>Rentsch, Iris</creatorcontrib><creatorcontrib>Lu, Bin</creatorcontrib><creatorcontrib>Santoni, Bastien Le Gars</creatorcontrib><creatorcontrib>Doebelin, Nicola</creatorcontrib><creatorcontrib>Bohner, Marc</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maazouz, Yassine</au><au>Rentsch, Iris</au><au>Lu, Bin</au><au>Santoni, Bastien Le Gars</au><au>Doebelin, Nicola</au><au>Bohner, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2020-01-15</date><risdate>2020</risdate><volume>102</volume><spage>440</spage><epage>457</epage><pages>440-457</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (“bioactivity”) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of β-Tricalcium Phosphate (β-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the β-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs. Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of β-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31756552</pmid><doi>10.1016/j.actbio.2019.11.035</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5079-3286</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2020-01, Vol.102, p.440-457
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2317594592
source ScienceDirect Freedom Collection 2022-2024
subjects Beta-tricalcium phosphate
Bioactivity
Biological activity
Biomedical materials
Body fluids
Bone graft substitute
Bone grafts
Bone Substitutes - chemistry
Calcium
Calcium phosphate
Calcium phosphates
Calcium Phosphates - chemistry
Computer simulation
Concentration gradient
Design of experiments
Ectopic bone formation
Factorial design
Grafting
Grafts
Granular materials
Heterotopic bone formation
In vitro methods and tests
Kinetics
Local pH
Microporosity
Mineralization
Organic chemistry
Osteogenesis
Osteoinductivity
Particle Size
pH effects
Phosphate
Phosphates
Pores
Porosity
Process parameters
Prostheses and Implants
Skin & tissue grafts
Solubility
Substitute bone
Surgical implants
Tricalcium phosphate
title In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20measurement%20of%20the%20chemical%20changes%20occurring%20within%20%CE%B2-tricalcium%20phosphate%20bone%20graft%20substitutes&rft.jtitle=Acta%20biomaterialia&rft.au=Maazouz,%20Yassine&rft.date=2020-01-15&rft.volume=102&rft.spage=440&rft.epage=457&rft.pages=440-457&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2019.11.035&rft_dat=%3Cproquest_cross%3E2317594592%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350927622&rft_id=info:pmid/31756552&rfr_iscdi=true