Loading…
In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes
Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (“bioactivity”) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemic...
Saved in:
Published in: | Acta biomaterialia 2020-01, Vol.102, p.440-457 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303 |
container_end_page | 457 |
container_issue | |
container_start_page | 440 |
container_title | Acta biomaterialia |
container_volume | 102 |
creator | Maazouz, Yassine Rentsch, Iris Lu, Bin Santoni, Bastien Le Gars Doebelin, Nicola Bohner, Marc |
description | Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (“bioactivity”) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of β-Tricalcium Phosphate (β-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the β-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs.
Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of β-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2019.11.035 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317594592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706119307858</els_id><sourcerecordid>2317594592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303</originalsourceid><addsrcrecordid>eNp90ctu1TAQBuAIgWgpvAFCltiwSfAlduINEqq4VKrEBtaW7UxOfJTYB1-K-lo8CM-Eo1NYsGDlWXwztudvmpcEdwQT8fbYaZuNCx3FRHaEdJjxR80lGYexHbgYH9d66Gk7YEEummcpHTFmI6Hj0-aCkSo4p5fNeuPRncsxoA10KhE28BmFGeUFkF1gc1avtdD-AAkFa0uMzh_QD5cX59Gvn22OO7GubOi0hHRadAZkggd0iHrOKBWTssslQ3rePJn1muDFw3nVfPv44ev15_b2y6eb6_e3re2ZyO0kjZknLUZKONVCayHGYdCTHaQG0_eYGCk15xjLkWFsMGczmw0WArTmDLOr5s157imG7wVSVptLFtZVewglKbr_X_Zc0kpf_0OPoURfX1cVx5IOgu6qPysbQ0oRZnWKbtPxXhGs9jTUUZ3TUHsaihBV06htrx6GF7PB9Lfpz_oreHcGULdx5yCqZB14C5OLYLOagvv_Db8BsX2eyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350927622</pqid></control><display><type>article</type><title>In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Maazouz, Yassine ; Rentsch, Iris ; Lu, Bin ; Santoni, Bastien Le Gars ; Doebelin, Nicola ; Bohner, Marc</creator><creatorcontrib>Maazouz, Yassine ; Rentsch, Iris ; Lu, Bin ; Santoni, Bastien Le Gars ; Doebelin, Nicola ; Bohner, Marc</creatorcontrib><description>Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (“bioactivity”) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of β-Tricalcium Phosphate (β-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the β-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs.
Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of β-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2019.11.035</identifier><identifier>PMID: 31756552</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Beta-tricalcium phosphate ; Bioactivity ; Biological activity ; Biomedical materials ; Body fluids ; Bone graft substitute ; Bone grafts ; Bone Substitutes - chemistry ; Calcium ; Calcium phosphate ; Calcium phosphates ; Calcium Phosphates - chemistry ; Computer simulation ; Concentration gradient ; Design of experiments ; Ectopic bone formation ; Factorial design ; Grafting ; Grafts ; Granular materials ; Heterotopic bone formation ; In vitro methods and tests ; Kinetics ; Local pH ; Microporosity ; Mineralization ; Organic chemistry ; Osteogenesis ; Osteoinductivity ; Particle Size ; pH effects ; Phosphate ; Phosphates ; Pores ; Porosity ; Process parameters ; Prostheses and Implants ; Skin & tissue grafts ; Solubility ; Substitute bone ; Surgical implants ; Tricalcium phosphate</subject><ispartof>Acta biomaterialia, 2020-01, Vol.102, p.440-457</ispartof><rights>2019 Acta Materialia Inc.</rights><rights>Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Jan 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303</citedby><cites>FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303</cites><orcidid>0000-0002-5079-3286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31756552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maazouz, Yassine</creatorcontrib><creatorcontrib>Rentsch, Iris</creatorcontrib><creatorcontrib>Lu, Bin</creatorcontrib><creatorcontrib>Santoni, Bastien Le Gars</creatorcontrib><creatorcontrib>Doebelin, Nicola</creatorcontrib><creatorcontrib>Bohner, Marc</creatorcontrib><title>In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (“bioactivity”) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of β-Tricalcium Phosphate (β-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the β-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs.
Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of β-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials.
[Display omitted]</description><subject>Beta-tricalcium phosphate</subject><subject>Bioactivity</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>Bone graft substitute</subject><subject>Bone grafts</subject><subject>Bone Substitutes - chemistry</subject><subject>Calcium</subject><subject>Calcium phosphate</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Computer simulation</subject><subject>Concentration gradient</subject><subject>Design of experiments</subject><subject>Ectopic bone formation</subject><subject>Factorial design</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Granular materials</subject><subject>Heterotopic bone formation</subject><subject>In vitro methods and tests</subject><subject>Kinetics</subject><subject>Local pH</subject><subject>Microporosity</subject><subject>Mineralization</subject><subject>Organic chemistry</subject><subject>Osteogenesis</subject><subject>Osteoinductivity</subject><subject>Particle Size</subject><subject>pH effects</subject><subject>Phosphate</subject><subject>Phosphates</subject><subject>Pores</subject><subject>Porosity</subject><subject>Process parameters</subject><subject>Prostheses and Implants</subject><subject>Skin & tissue grafts</subject><subject>Solubility</subject><subject>Substitute bone</subject><subject>Surgical implants</subject><subject>Tricalcium phosphate</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90ctu1TAQBuAIgWgpvAFCltiwSfAlduINEqq4VKrEBtaW7UxOfJTYB1-K-lo8CM-Eo1NYsGDlWXwztudvmpcEdwQT8fbYaZuNCx3FRHaEdJjxR80lGYexHbgYH9d66Gk7YEEummcpHTFmI6Hj0-aCkSo4p5fNeuPRncsxoA10KhE28BmFGeUFkF1gc1avtdD-AAkFa0uMzh_QD5cX59Gvn22OO7GubOi0hHRadAZkggd0iHrOKBWTssslQ3rePJn1muDFw3nVfPv44ev15_b2y6eb6_e3re2ZyO0kjZknLUZKONVCayHGYdCTHaQG0_eYGCk15xjLkWFsMGczmw0WArTmDLOr5s157imG7wVSVptLFtZVewglKbr_X_Zc0kpf_0OPoURfX1cVx5IOgu6qPysbQ0oRZnWKbtPxXhGs9jTUUZ3TUHsaihBV06htrx6GF7PB9Lfpz_oreHcGULdx5yCqZB14C5OLYLOagvv_Db8BsX2eyA</recordid><startdate>20200115</startdate><enddate>20200115</enddate><creator>Maazouz, Yassine</creator><creator>Rentsch, Iris</creator><creator>Lu, Bin</creator><creator>Santoni, Bastien Le Gars</creator><creator>Doebelin, Nicola</creator><creator>Bohner, Marc</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5079-3286</orcidid></search><sort><creationdate>20200115</creationdate><title>In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes</title><author>Maazouz, Yassine ; Rentsch, Iris ; Lu, Bin ; Santoni, Bastien Le Gars ; Doebelin, Nicola ; Bohner, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beta-tricalcium phosphate</topic><topic>Bioactivity</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>Bone graft substitute</topic><topic>Bone grafts</topic><topic>Bone Substitutes - chemistry</topic><topic>Calcium</topic><topic>Calcium phosphate</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Computer simulation</topic><topic>Concentration gradient</topic><topic>Design of experiments</topic><topic>Ectopic bone formation</topic><topic>Factorial design</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Granular materials</topic><topic>Heterotopic bone formation</topic><topic>In vitro methods and tests</topic><topic>Kinetics</topic><topic>Local pH</topic><topic>Microporosity</topic><topic>Mineralization</topic><topic>Organic chemistry</topic><topic>Osteogenesis</topic><topic>Osteoinductivity</topic><topic>Particle Size</topic><topic>pH effects</topic><topic>Phosphate</topic><topic>Phosphates</topic><topic>Pores</topic><topic>Porosity</topic><topic>Process parameters</topic><topic>Prostheses and Implants</topic><topic>Skin & tissue grafts</topic><topic>Solubility</topic><topic>Substitute bone</topic><topic>Surgical implants</topic><topic>Tricalcium phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maazouz, Yassine</creatorcontrib><creatorcontrib>Rentsch, Iris</creatorcontrib><creatorcontrib>Lu, Bin</creatorcontrib><creatorcontrib>Santoni, Bastien Le Gars</creatorcontrib><creatorcontrib>Doebelin, Nicola</creatorcontrib><creatorcontrib>Bohner, Marc</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maazouz, Yassine</au><au>Rentsch, Iris</au><au>Lu, Bin</au><au>Santoni, Bastien Le Gars</au><au>Doebelin, Nicola</au><au>Bohner, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2020-01-15</date><risdate>2020</risdate><volume>102</volume><spage>440</spage><epage>457</epage><pages>440-457</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization (“bioactivity”) and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of β-Tricalcium Phosphate (β-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the β-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs.
Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of β-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31756552</pmid><doi>10.1016/j.actbio.2019.11.035</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5079-3286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2020-01, Vol.102, p.440-457 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2317594592 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Beta-tricalcium phosphate Bioactivity Biological activity Biomedical materials Body fluids Bone graft substitute Bone grafts Bone Substitutes - chemistry Calcium Calcium phosphate Calcium phosphates Calcium Phosphates - chemistry Computer simulation Concentration gradient Design of experiments Ectopic bone formation Factorial design Grafting Grafts Granular materials Heterotopic bone formation In vitro methods and tests Kinetics Local pH Microporosity Mineralization Organic chemistry Osteogenesis Osteoinductivity Particle Size pH effects Phosphate Phosphates Pores Porosity Process parameters Prostheses and Implants Skin & tissue grafts Solubility Substitute bone Surgical implants Tricalcium phosphate |
title | In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20measurement%20of%20the%20chemical%20changes%20occurring%20within%20%CE%B2-tricalcium%20phosphate%20bone%20graft%20substitutes&rft.jtitle=Acta%20biomaterialia&rft.au=Maazouz,%20Yassine&rft.date=2020-01-15&rft.volume=102&rft.spage=440&rft.epage=457&rft.pages=440-457&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2019.11.035&rft_dat=%3Cproquest_cross%3E2317594592%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-d9bbfda682152a6aa66877adc79aeb4401b99a550098300b053f3fb066eaa5303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350927622&rft_id=info:pmid/31756552&rfr_iscdi=true |