Loading…

The Kendrick analysis for polymer mass spectrometry

The mass spectrum of a polymer often displays repetitive patterns with peak series spaced by the repeating unit(s) of the polymeric backbones, sometimes complexified with different adducts, chain terminations, or charge states. Exploring the complex mass spectral data or filtering the unwanted signa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mass spectrometry. 2019-12, Vol.54 (12), p.933-947
Main Author: Fouquet, Thierry N.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4520-8d2f5c7289200cdb8a202137a1dcf94e0583ae86c2977e5ad6aad7b8d52e0b533
cites cdi_FETCH-LOGICAL-c4520-8d2f5c7289200cdb8a202137a1dcf94e0583ae86c2977e5ad6aad7b8d52e0b533
container_end_page 947
container_issue 12
container_start_page 933
container_title Journal of mass spectrometry.
container_volume 54
creator Fouquet, Thierry N.J.
description The mass spectrum of a polymer often displays repetitive patterns with peak series spaced by the repeating unit(s) of the polymeric backbones, sometimes complexified with different adducts, chain terminations, or charge states. Exploring the complex mass spectral data or filtering the unwanted signal is tedious whether performed manually or automatically. In contrast, the now 60‐year‐old Kendrick (mass defect) analysis, when adapted to polymer ions, produces visual two‐dimensional maps with intuitive alignments of the repetitive patterns and favourable deconvolution of features overlaid in the one‐dimensional mass spectrum. This special feature article reports on an up‐to‐date and theoretically sound use of Kendrick plots as a data processing tool. The approach requires no prior knowledge of the sample but offers promising dynamic capabilities for visualizing, filtering, and sometimes assigning congested mass spectra. Examples of applications of the approach to polymers are discussed throughout the text, but the same tools can be readily extended to other applications, including the analysis of polymers present as pollutants/contaminants, and to other analytes incorporating a repetitive moiety, for example, oils or lipids. In each of these instances, data processing can benefit from the application of an updated and interactive Kendrick analysis.
doi_str_mv 10.1002/jms.4480
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2317604467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334103786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4520-8d2f5c7289200cdb8a202137a1dcf94e0583ae86c2977e5ad6aad7b8d52e0b533</originalsourceid><addsrcrecordid>eNp1kEtLw0AURgdRbK2Cv0ACbtyk3nlPllJ8Ky6s62EyM8HUpKkzDZJ_b2KrguDq3sXhwHcQOsYwxQDkfFHHKWMKdtAYQybSTCm1O_xSpBxLNkIHMS4AIMuY2EcjiiVXAvgY0fmrT-790oXSviVmaaouljEpmpCsmqqrfUhqE2MSV96uQ1P7degO0V5hquiPtneCXq4u57Ob9OHp-nZ28ZBaxgmkypGCW0lURgCsy5UhQDCVBjtbZMwDV9R4JSzJpPTcOGGMk7lynHjIOaUTdLbxrkLz3vq41nUZra8qs_RNGzXpZwhgTMgePf2DLpo29GsGijIMVCrxK7ShiTH4Qq9CWZvQaQx6CKn7kHoI2aMnW2Gb1979gN_leiDdAB9l5bt_Rfru8flL-AkSanqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334103786</pqid></control><display><type>article</type><title>The Kendrick analysis for polymer mass spectrometry</title><source>Wiley</source><creator>Fouquet, Thierry N.J.</creator><creatorcontrib>Fouquet, Thierry N.J.</creatorcontrib><description>The mass spectrum of a polymer often displays repetitive patterns with peak series spaced by the repeating unit(s) of the polymeric backbones, sometimes complexified with different adducts, chain terminations, or charge states. Exploring the complex mass spectral data or filtering the unwanted signal is tedious whether performed manually or automatically. In contrast, the now 60‐year‐old Kendrick (mass defect) analysis, when adapted to polymer ions, produces visual two‐dimensional maps with intuitive alignments of the repetitive patterns and favourable deconvolution of features overlaid in the one‐dimensional mass spectrum. This special feature article reports on an up‐to‐date and theoretically sound use of Kendrick plots as a data processing tool. The approach requires no prior knowledge of the sample but offers promising dynamic capabilities for visualizing, filtering, and sometimes assigning congested mass spectra. Examples of applications of the approach to polymers are discussed throughout the text, but the same tools can be readily extended to other applications, including the analysis of polymers present as pollutants/contaminants, and to other analytes incorporating a repetitive moiety, for example, oils or lipids. In each of these instances, data processing can benefit from the application of an updated and interactive Kendrick analysis.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.4480</identifier><identifier>PMID: 31758605</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adducts ; Analysis ; Contaminants ; Data analysis ; Data processing ; Filtration ; Ions ; Lipids ; Mass spectra ; Mass spectrometry ; Mass spectroscopy ; Oils &amp; fats ; Pollutants ; Polymers ; Termination (polymerization)</subject><ispartof>Journal of mass spectrometry., 2019-12, Vol.54 (12), p.933-947</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4520-8d2f5c7289200cdb8a202137a1dcf94e0583ae86c2977e5ad6aad7b8d52e0b533</citedby><cites>FETCH-LOGICAL-c4520-8d2f5c7289200cdb8a202137a1dcf94e0583ae86c2977e5ad6aad7b8d52e0b533</cites><orcidid>0000-0002-9473-9425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31758605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fouquet, Thierry N.J.</creatorcontrib><title>The Kendrick analysis for polymer mass spectrometry</title><title>Journal of mass spectrometry.</title><addtitle>J Mass Spectrom</addtitle><description>The mass spectrum of a polymer often displays repetitive patterns with peak series spaced by the repeating unit(s) of the polymeric backbones, sometimes complexified with different adducts, chain terminations, or charge states. Exploring the complex mass spectral data or filtering the unwanted signal is tedious whether performed manually or automatically. In contrast, the now 60‐year‐old Kendrick (mass defect) analysis, when adapted to polymer ions, produces visual two‐dimensional maps with intuitive alignments of the repetitive patterns and favourable deconvolution of features overlaid in the one‐dimensional mass spectrum. This special feature article reports on an up‐to‐date and theoretically sound use of Kendrick plots as a data processing tool. The approach requires no prior knowledge of the sample but offers promising dynamic capabilities for visualizing, filtering, and sometimes assigning congested mass spectra. Examples of applications of the approach to polymers are discussed throughout the text, but the same tools can be readily extended to other applications, including the analysis of polymers present as pollutants/contaminants, and to other analytes incorporating a repetitive moiety, for example, oils or lipids. In each of these instances, data processing can benefit from the application of an updated and interactive Kendrick analysis.</description><subject>Adducts</subject><subject>Analysis</subject><subject>Contaminants</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Filtration</subject><subject>Ions</subject><subject>Lipids</subject><subject>Mass spectra</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Oils &amp; fats</subject><subject>Pollutants</subject><subject>Polymers</subject><subject>Termination (polymerization)</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AURgdRbK2Cv0ACbtyk3nlPllJ8Ky6s62EyM8HUpKkzDZJ_b2KrguDq3sXhwHcQOsYwxQDkfFHHKWMKdtAYQybSTCm1O_xSpBxLNkIHMS4AIMuY2EcjiiVXAvgY0fmrT-790oXSviVmaaouljEpmpCsmqqrfUhqE2MSV96uQ1P7degO0V5hquiPtneCXq4u57Ob9OHp-nZ28ZBaxgmkypGCW0lURgCsy5UhQDCVBjtbZMwDV9R4JSzJpPTcOGGMk7lynHjIOaUTdLbxrkLz3vq41nUZra8qs_RNGzXpZwhgTMgePf2DLpo29GsGijIMVCrxK7ShiTH4Qq9CWZvQaQx6CKn7kHoI2aMnW2Gb1979gN_leiDdAB9l5bt_Rfru8flL-AkSanqw</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Fouquet, Thierry N.J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9473-9425</orcidid></search><sort><creationdate>201912</creationdate><title>The Kendrick analysis for polymer mass spectrometry</title><author>Fouquet, Thierry N.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4520-8d2f5c7289200cdb8a202137a1dcf94e0583ae86c2977e5ad6aad7b8d52e0b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adducts</topic><topic>Analysis</topic><topic>Contaminants</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Filtration</topic><topic>Ions</topic><topic>Lipids</topic><topic>Mass spectra</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Oils &amp; fats</topic><topic>Pollutants</topic><topic>Polymers</topic><topic>Termination (polymerization)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fouquet, Thierry N.J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fouquet, Thierry N.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Kendrick analysis for polymer mass spectrometry</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J Mass Spectrom</addtitle><date>2019-12</date><risdate>2019</risdate><volume>54</volume><issue>12</issue><spage>933</spage><epage>947</epage><pages>933-947</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>The mass spectrum of a polymer often displays repetitive patterns with peak series spaced by the repeating unit(s) of the polymeric backbones, sometimes complexified with different adducts, chain terminations, or charge states. Exploring the complex mass spectral data or filtering the unwanted signal is tedious whether performed manually or automatically. In contrast, the now 60‐year‐old Kendrick (mass defect) analysis, when adapted to polymer ions, produces visual two‐dimensional maps with intuitive alignments of the repetitive patterns and favourable deconvolution of features overlaid in the one‐dimensional mass spectrum. This special feature article reports on an up‐to‐date and theoretically sound use of Kendrick plots as a data processing tool. The approach requires no prior knowledge of the sample but offers promising dynamic capabilities for visualizing, filtering, and sometimes assigning congested mass spectra. Examples of applications of the approach to polymers are discussed throughout the text, but the same tools can be readily extended to other applications, including the analysis of polymers present as pollutants/contaminants, and to other analytes incorporating a repetitive moiety, for example, oils or lipids. In each of these instances, data processing can benefit from the application of an updated and interactive Kendrick analysis.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31758605</pmid><doi>10.1002/jms.4480</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9473-9425</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1076-5174
ispartof Journal of mass spectrometry., 2019-12, Vol.54 (12), p.933-947
issn 1076-5174
1096-9888
language eng
recordid cdi_proquest_miscellaneous_2317604467
source Wiley
subjects Adducts
Analysis
Contaminants
Data analysis
Data processing
Filtration
Ions
Lipids
Mass spectra
Mass spectrometry
Mass spectroscopy
Oils & fats
Pollutants
Polymers
Termination (polymerization)
title The Kendrick analysis for polymer mass spectrometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Kendrick%20analysis%20for%20polymer%20mass%20spectrometry&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Fouquet,%20Thierry%20N.J.&rft.date=2019-12&rft.volume=54&rft.issue=12&rft.spage=933&rft.epage=947&rft.pages=933-947&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.4480&rft_dat=%3Cproquest_cross%3E2334103786%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4520-8d2f5c7289200cdb8a202137a1dcf94e0583ae86c2977e5ad6aad7b8d52e0b533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2334103786&rft_id=info:pmid/31758605&rfr_iscdi=true