Loading…
Homogeneous nickel metal-organic framework microspheres on reduced graphene oxide as novel electrode material for supercapacitors with outstanding performance
[Display omitted] Herein, we designed and prepared nickel metal-organic framework microspheres anchored directly on reduced graphene oxide (Ni-MOF/rGO) by a facile hydrothermal and successive calcining process. The electrode for Ni-MOF/rGO composite annealed at an optimized temperature of 300 °C (Ni...
Saved in:
Published in: | Journal of colloid and interface science 2020-03, Vol.561, p.265-274 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Herein, we designed and prepared nickel metal-organic framework microspheres anchored directly on reduced graphene oxide (Ni-MOF/rGO) by a facile hydrothermal and successive calcining process. The electrode for Ni-MOF/rGO composite annealed at an optimized temperature of 300 °C (Ni-MOF/rGO-300) shows desired conductivity, good cycling stability and high ion-accessible surface area, leading to an ultrahigh specific capacitance of 954 F g−1 at a current density of 1 A g−1 and a remarkable rate capability of 80.25% at 5 A g−1. Meanwhile, the assembled Ni-MOF/rGO-300//activated carbon asymmetric supercapacitor (ASC) shows a favorable energy density up to 17.13 Wh kg−1 at a power density of 750 W kg−1 in the potential window of 0–1.5 V. Moreover, the capacitance retention can still maintain 81.63% after 4000 cycles at a high current density of 5 A g−1. The excellent electrochemical properties can be credited to the synergistic effects between the unique structures of Ni-MOF and rGO, which makes the Ni-MOF/rGO composite a potential electrode material for high performance supercapacitors. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2019.10.023 |