Loading…

Effects of a soil organic amendment on metal allocation of trees for the phytomanagement of mining-impacted soils

The suitable application of phytomanagement by phytostabilisation using plant tree species in metal-polluted soils requires an assessment of the fate of metals in biological tree compartments. The goal of this work was to evaluate the effect of an urban compost amendment on metal allocation in two e...

Full description

Saved in:
Bibliographic Details
Published in:Environmental geochemistry and health 2021-04, Vol.43 (4), p.1355-1366
Main Authors: Conesa, Héctor M., Párraga-Aguado, Isabel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The suitable application of phytomanagement by phytostabilisation using plant tree species in metal-polluted soils requires an assessment of the fate of metals in biological tree compartments. The goal of this work was to evaluate the effect of an urban compost amendment on metal allocation in two evergreen tree species ( Pinus halepensis and Tetraclinis articulata ) growing in a metal-enriched polluted substrate. A comprehensive characterisation of edaphic parameters and metal speciation was carried out. Plant analyses included metal concentrations in different tree compartments: roots, stems, branches and leaves. The amendment caused a significant increase in plant biomass for both trees, although T. articulata produced 2.5 times more biomass than P. halepensis . The amendment alleviated P deficiency in P. halepensis . This did not occur for the N deficiency detected in T. articulata . The latter showed no effect of the amendment in the allocation of metals, being most of them restricted at the root compartment (> 50%). For P. halepensis, similar behaviour occurred for Cu, Pb and Zn. However, for Cd, the amendment caused its redistribution into pine shoots, probably due to its transport associated with the increased transpiration. Results indicated that T. articulata may be a promising tree species to be used in phytomanagement programs under semiarid climates due to its low metal translocation into shoots and remarkable biomass production under amendment conditions.
ISSN:0269-4042
1573-2983
DOI:10.1007/s10653-019-00479-0