Loading…
Transgenic PDGF-BB/sericin hydrogel supports for cell proliferation and osteogenic differentiation
Sericin has been exploited as a biomaterial due to its biocompatibility, biodegradability, and low-immunogenicity as an isolated polymer and support for cell adhesion. In the present study, human platelet-derived growth factor (PDGF-BB)-functionalized sericin hydrogels were generated using transgeni...
Saved in:
Published in: | Biomaterials science 2020-01, Vol.8 (2), p.657-672 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sericin has been exploited as a biomaterial due to its biocompatibility, biodegradability, and low-immunogenicity as an isolated polymer and support for cell adhesion. In the present study, human platelet-derived growth factor (PDGF-BB)-functionalized sericin hydrogels were generated using transgenic silkworms, where the as-spun silk incorporated engineered PDGF-BB (termed PDGFM) in the sericin layers of the cocoons. Sericin and PDGFM were simultaneously extracted from the silk fibroin cocoon fibers, and the soluble extract was then formed into a hydrogel
via
thermal exposure. The PDGFM sericin hydrogels exhibited increased β-sheet content and a compressive modulus of 74.91 ± 2.9 kPa comparable to chemically crosslinked sericin hydrogels (1.68-55.53 kPa) and a porous microstructure, which contributed to cell adhesion and growth. A 13.1% of total extracted PDGFM from the initial silk fibers was incorporated and immobilized in the sericin hydrogels during material processing, and 1.33% of PDGFM was released over 30 days from the hydrogels
in vitro
. The remaining PDGFM achieved long-term storage/stability in the sericin hydrogels for more than 42 days at 37 °C. In addition, the PDGFM sericin hydrogels were not immunogenic, were biocompatible and bioactive in promoting the support of cell proliferation. When combined with BMP-9, the PDGFM sericin hydrogels provided synergy to support the osteoblastic differentiation of mesenchymal stem cells (hMSCs)
in vitro
and
in vivo
. This study demonstrates that genetically functionalized PDGFM sericin hydrogels can provide useful biomaterials to support cell and tissue outcomes, here with a focus on osteogenesis.
The present study demonstrates fabrication of PDGF-BB functionalized sericin hydrogel to explore biomaterials-related utility in bone tissue engineering. |
---|---|
ISSN: | 2047-4830 2047-4849 |
DOI: | 10.1039/c9bm01478k |