Loading…

Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering

The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions presen...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-12, Vol.11 (51), p.47771-47784
Main Authors: Echave, Mari Carmen, Domingues, Rui M. A, Gómez-Florit, Manuel, Pedraz, José Luis, Reis, Rui L, Orive, Gorka, Gomes, Manuela E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3
cites cdi_FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3
container_end_page 47784
container_issue 51
container_start_page 47771
container_title ACS applied materials & interfaces
container_volume 11
creator Echave, Mari Carmen
Domingues, Rui M. A
Gómez-Florit, Manuel
Pedraz, José Luis
Reis, Rui L
Orive, Gorka
Gomes, Manuela E
description The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, where sections with distinct composition and microstructure were integrated in a single unit. In each phase, hydroxyapatite particles or cellulose nanocrystals (CNC) were incorporated into an enzymatically cross-linked gelatin network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced with the incorporation of mineralized particles, and magnetic alignment of CNC resulted in anisotropic structure formation. The evaluation of the biological commitment with human adipose-derived stem cells toward the tendon-to-bone interface revealed an aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic phase, while the activity of the secreted alkaline phosphatase and the expression of osteopontin were induced in the mineralized phase. These results highlight the potential versatility offered by gelatin-transglutaminase enzyme tandem for the development of strategies that mimic the graded, composite, and complex intersections of the connective tissues.
doi_str_mv 10.1021/acsami.9b17826
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2320641119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320641119</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EoqWwMqKMCCnFThwnGUvV0kpFLGWOXpzn4CofxU6G8utxSenG5Cf53CvdQ8g9o1NGA_YM0kKtp2nO4iQQF2TMUs79JIiCy_PN-YjcWLujVIQBja7JKHR0ylM-JupF7z_BaumtDoVpS6yst246LA10uim9N92ggUp_Y-FBU3izRtu2M-3eJZYIXW_Qeqo1vyGjQGqovK22tkdv0ZQujcb13JIrBZXFu9M7IR_LxXa-8jfvr-v5bOMDF6zzQcQIDOO0KJJQxEkulZI5VSghoirCGKX7oHkcxTLleByUiBjcTCEkShlOyOPQuzftV4-2y2ptJVYVNNj2NgucAMEZY6lDpwMqTWutQZXtja7BHDJGs6PbbHCbndy6wMOpu89rLM74n0wHPA2AC2a7tjeNm_pf2w89IYaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320641119</pqid></control><display><type>article</type><title>Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Echave, Mari Carmen ; Domingues, Rui M. A ; Gómez-Florit, Manuel ; Pedraz, José Luis ; Reis, Rui L ; Orive, Gorka ; Gomes, Manuela E</creator><creatorcontrib>Echave, Mari Carmen ; Domingues, Rui M. A ; Gómez-Florit, Manuel ; Pedraz, José Luis ; Reis, Rui L ; Orive, Gorka ; Gomes, Manuela E</creatorcontrib><description>The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, where sections with distinct composition and microstructure were integrated in a single unit. In each phase, hydroxyapatite particles or cellulose nanocrystals (CNC) were incorporated into an enzymatically cross-linked gelatin network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced with the incorporation of mineralized particles, and magnetic alignment of CNC resulted in anisotropic structure formation. The evaluation of the biological commitment with human adipose-derived stem cells toward the tendon-to-bone interface revealed an aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic phase, while the activity of the secreted alkaline phosphatase and the expression of osteopontin were induced in the mineralized phase. These results highlight the potential versatility offered by gelatin-transglutaminase enzyme tandem for the development of strategies that mimic the graded, composite, and complex intersections of the connective tissues.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b17826</identifier><identifier>PMID: 31789494</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cellulose - chemistry ; CRISPR-Cas Systems - genetics ; CRISPR-Cas Systems - physiology ; Gelatin - chemistry ; Gene Editing - methods ; Humans ; Hydrogels - chemistry ; Microscopy ; Nanoparticles - chemistry ; Swine ; Tendons - cytology ; Tissue Engineering - methods ; Transglutaminases - metabolism</subject><ispartof>ACS applied materials &amp; interfaces, 2019-12, Vol.11 (51), p.47771-47784</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3</citedby><cites>FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3</cites><orcidid>0000-0002-3654-9906 ; 0000-0001-7758-1251 ; 0000-0003-1419-4822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31789494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Echave, Mari Carmen</creatorcontrib><creatorcontrib>Domingues, Rui M. A</creatorcontrib><creatorcontrib>Gómez-Florit, Manuel</creatorcontrib><creatorcontrib>Pedraz, José Luis</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Orive, Gorka</creatorcontrib><creatorcontrib>Gomes, Manuela E</creatorcontrib><title>Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, where sections with distinct composition and microstructure were integrated in a single unit. In each phase, hydroxyapatite particles or cellulose nanocrystals (CNC) were incorporated into an enzymatically cross-linked gelatin network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced with the incorporation of mineralized particles, and magnetic alignment of CNC resulted in anisotropic structure formation. The evaluation of the biological commitment with human adipose-derived stem cells toward the tendon-to-bone interface revealed an aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic phase, while the activity of the secreted alkaline phosphatase and the expression of osteopontin were induced in the mineralized phase. These results highlight the potential versatility offered by gelatin-transglutaminase enzyme tandem for the development of strategies that mimic the graded, composite, and complex intersections of the connective tissues.</description><subject>Animals</subject><subject>Cellulose - chemistry</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>CRISPR-Cas Systems - physiology</subject><subject>Gelatin - chemistry</subject><subject>Gene Editing - methods</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Microscopy</subject><subject>Nanoparticles - chemistry</subject><subject>Swine</subject><subject>Tendons - cytology</subject><subject>Tissue Engineering - methods</subject><subject>Transglutaminases - metabolism</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EoqWwMqKMCCnFThwnGUvV0kpFLGWOXpzn4CofxU6G8utxSenG5Cf53CvdQ8g9o1NGA_YM0kKtp2nO4iQQF2TMUs79JIiCy_PN-YjcWLujVIQBja7JKHR0ylM-JupF7z_BaumtDoVpS6yst246LA10uim9N92ggUp_Y-FBU3izRtu2M-3eJZYIXW_Qeqo1vyGjQGqovK22tkdv0ZQujcb13JIrBZXFu9M7IR_LxXa-8jfvr-v5bOMDF6zzQcQIDOO0KJJQxEkulZI5VSghoirCGKX7oHkcxTLleByUiBjcTCEkShlOyOPQuzftV4-2y2ptJVYVNNj2NgucAMEZY6lDpwMqTWutQZXtja7BHDJGs6PbbHCbndy6wMOpu89rLM74n0wHPA2AC2a7tjeNm_pf2w89IYaI</recordid><startdate>20191226</startdate><enddate>20191226</enddate><creator>Echave, Mari Carmen</creator><creator>Domingues, Rui M. A</creator><creator>Gómez-Florit, Manuel</creator><creator>Pedraz, José Luis</creator><creator>Reis, Rui L</creator><creator>Orive, Gorka</creator><creator>Gomes, Manuela E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3654-9906</orcidid><orcidid>https://orcid.org/0000-0001-7758-1251</orcidid><orcidid>https://orcid.org/0000-0003-1419-4822</orcidid></search><sort><creationdate>20191226</creationdate><title>Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering</title><author>Echave, Mari Carmen ; Domingues, Rui M. A ; Gómez-Florit, Manuel ; Pedraz, José Luis ; Reis, Rui L ; Orive, Gorka ; Gomes, Manuela E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cellulose - chemistry</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>CRISPR-Cas Systems - physiology</topic><topic>Gelatin - chemistry</topic><topic>Gene Editing - methods</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Microscopy</topic><topic>Nanoparticles - chemistry</topic><topic>Swine</topic><topic>Tendons - cytology</topic><topic>Tissue Engineering - methods</topic><topic>Transglutaminases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Echave, Mari Carmen</creatorcontrib><creatorcontrib>Domingues, Rui M. A</creatorcontrib><creatorcontrib>Gómez-Florit, Manuel</creatorcontrib><creatorcontrib>Pedraz, José Luis</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Orive, Gorka</creatorcontrib><creatorcontrib>Gomes, Manuela E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echave, Mari Carmen</au><au>Domingues, Rui M. A</au><au>Gómez-Florit, Manuel</au><au>Pedraz, José Luis</au><au>Reis, Rui L</au><au>Orive, Gorka</au><au>Gomes, Manuela E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-12-26</date><risdate>2019</risdate><volume>11</volume><issue>51</issue><spage>47771</spage><epage>47784</epage><pages>47771-47784</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, where sections with distinct composition and microstructure were integrated in a single unit. In each phase, hydroxyapatite particles or cellulose nanocrystals (CNC) were incorporated into an enzymatically cross-linked gelatin network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced with the incorporation of mineralized particles, and magnetic alignment of CNC resulted in anisotropic structure formation. The evaluation of the biological commitment with human adipose-derived stem cells toward the tendon-to-bone interface revealed an aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic phase, while the activity of the secreted alkaline phosphatase and the expression of osteopontin were induced in the mineralized phase. These results highlight the potential versatility offered by gelatin-transglutaminase enzyme tandem for the development of strategies that mimic the graded, composite, and complex intersections of the connective tissues.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31789494</pmid><doi>10.1021/acsami.9b17826</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3654-9906</orcidid><orcidid>https://orcid.org/0000-0001-7758-1251</orcidid><orcidid>https://orcid.org/0000-0003-1419-4822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-12, Vol.11 (51), p.47771-47784
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2320641119
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Cellulose - chemistry
CRISPR-Cas Systems - genetics
CRISPR-Cas Systems - physiology
Gelatin - chemistry
Gene Editing - methods
Humans
Hydrogels - chemistry
Microscopy
Nanoparticles - chemistry
Swine
Tendons - cytology
Tissue Engineering - methods
Transglutaminases - metabolism
title Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biphasic%20Hydrogels%20Integrating%20Mineralized%20and%20Anisotropic%20Features%20for%20Interfacial%20Tissue%20Engineering&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Echave,%20Mari%20Carmen&rft.date=2019-12-26&rft.volume=11&rft.issue=51&rft.spage=47771&rft.epage=47784&rft.pages=47771-47784&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b17826&rft_dat=%3Cproquest_cross%3E2320641119%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2320641119&rft_id=info:pmid/31789494&rfr_iscdi=true