Loading…
Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering
The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions presen...
Saved in:
Published in: | ACS applied materials & interfaces 2019-12, Vol.11 (51), p.47771-47784 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3 |
---|---|
cites | cdi_FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3 |
container_end_page | 47784 |
container_issue | 51 |
container_start_page | 47771 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Echave, Mari Carmen Domingues, Rui M. A Gómez-Florit, Manuel Pedraz, José Luis Reis, Rui L Orive, Gorka Gomes, Manuela E |
description | The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, where sections with distinct composition and microstructure were integrated in a single unit. In each phase, hydroxyapatite particles or cellulose nanocrystals (CNC) were incorporated into an enzymatically cross-linked gelatin network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced with the incorporation of mineralized particles, and magnetic alignment of CNC resulted in anisotropic structure formation. The evaluation of the biological commitment with human adipose-derived stem cells toward the tendon-to-bone interface revealed an aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic phase, while the activity of the secreted alkaline phosphatase and the expression of osteopontin were induced in the mineralized phase. These results highlight the potential versatility offered by gelatin-transglutaminase enzyme tandem for the development of strategies that mimic the graded, composite, and complex intersections of the connective tissues. |
doi_str_mv | 10.1021/acsami.9b17826 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2320641119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320641119</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EoqWwMqKMCCnFThwnGUvV0kpFLGWOXpzn4CofxU6G8utxSenG5Cf53CvdQ8g9o1NGA_YM0kKtp2nO4iQQF2TMUs79JIiCy_PN-YjcWLujVIQBja7JKHR0ylM-JupF7z_BaumtDoVpS6yst246LA10uim9N92ggUp_Y-FBU3izRtu2M-3eJZYIXW_Qeqo1vyGjQGqovK22tkdv0ZQujcb13JIrBZXFu9M7IR_LxXa-8jfvr-v5bOMDF6zzQcQIDOO0KJJQxEkulZI5VSghoirCGKX7oHkcxTLleByUiBjcTCEkShlOyOPQuzftV4-2y2ptJVYVNNj2NgucAMEZY6lDpwMqTWutQZXtja7BHDJGs6PbbHCbndy6wMOpu89rLM74n0wHPA2AC2a7tjeNm_pf2w89IYaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320641119</pqid></control><display><type>article</type><title>Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Echave, Mari Carmen ; Domingues, Rui M. A ; Gómez-Florit, Manuel ; Pedraz, José Luis ; Reis, Rui L ; Orive, Gorka ; Gomes, Manuela E</creator><creatorcontrib>Echave, Mari Carmen ; Domingues, Rui M. A ; Gómez-Florit, Manuel ; Pedraz, José Luis ; Reis, Rui L ; Orive, Gorka ; Gomes, Manuela E</creatorcontrib><description>The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, where sections with distinct composition and microstructure were integrated in a single unit. In each phase, hydroxyapatite particles or cellulose nanocrystals (CNC) were incorporated into an enzymatically cross-linked gelatin network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced with the incorporation of mineralized particles, and magnetic alignment of CNC resulted in anisotropic structure formation. The evaluation of the biological commitment with human adipose-derived stem cells toward the tendon-to-bone interface revealed an aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic phase, while the activity of the secreted alkaline phosphatase and the expression of osteopontin were induced in the mineralized phase. These results highlight the potential versatility offered by gelatin-transglutaminase enzyme tandem for the development of strategies that mimic the graded, composite, and complex intersections of the connective tissues.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b17826</identifier><identifier>PMID: 31789494</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cellulose - chemistry ; CRISPR-Cas Systems - genetics ; CRISPR-Cas Systems - physiology ; Gelatin - chemistry ; Gene Editing - methods ; Humans ; Hydrogels - chemistry ; Microscopy ; Nanoparticles - chemistry ; Swine ; Tendons - cytology ; Tissue Engineering - methods ; Transglutaminases - metabolism</subject><ispartof>ACS applied materials & interfaces, 2019-12, Vol.11 (51), p.47771-47784</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3</citedby><cites>FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3</cites><orcidid>0000-0002-3654-9906 ; 0000-0001-7758-1251 ; 0000-0003-1419-4822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31789494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Echave, Mari Carmen</creatorcontrib><creatorcontrib>Domingues, Rui M. A</creatorcontrib><creatorcontrib>Gómez-Florit, Manuel</creatorcontrib><creatorcontrib>Pedraz, José Luis</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Orive, Gorka</creatorcontrib><creatorcontrib>Gomes, Manuela E</creatorcontrib><title>Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, where sections with distinct composition and microstructure were integrated in a single unit. In each phase, hydroxyapatite particles or cellulose nanocrystals (CNC) were incorporated into an enzymatically cross-linked gelatin network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced with the incorporation of mineralized particles, and magnetic alignment of CNC resulted in anisotropic structure formation. The evaluation of the biological commitment with human adipose-derived stem cells toward the tendon-to-bone interface revealed an aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic phase, while the activity of the secreted alkaline phosphatase and the expression of osteopontin were induced in the mineralized phase. These results highlight the potential versatility offered by gelatin-transglutaminase enzyme tandem for the development of strategies that mimic the graded, composite, and complex intersections of the connective tissues.</description><subject>Animals</subject><subject>Cellulose - chemistry</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>CRISPR-Cas Systems - physiology</subject><subject>Gelatin - chemistry</subject><subject>Gene Editing - methods</subject><subject>Humans</subject><subject>Hydrogels - chemistry</subject><subject>Microscopy</subject><subject>Nanoparticles - chemistry</subject><subject>Swine</subject><subject>Tendons - cytology</subject><subject>Tissue Engineering - methods</subject><subject>Transglutaminases - metabolism</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EoqWwMqKMCCnFThwnGUvV0kpFLGWOXpzn4CofxU6G8utxSenG5Cf53CvdQ8g9o1NGA_YM0kKtp2nO4iQQF2TMUs79JIiCy_PN-YjcWLujVIQBja7JKHR0ylM-JupF7z_BaumtDoVpS6yst246LA10uim9N92ggUp_Y-FBU3izRtu2M-3eJZYIXW_Qeqo1vyGjQGqovK22tkdv0ZQujcb13JIrBZXFu9M7IR_LxXa-8jfvr-v5bOMDF6zzQcQIDOO0KJJQxEkulZI5VSghoirCGKX7oHkcxTLleByUiBjcTCEkShlOyOPQuzftV4-2y2ptJVYVNNj2NgucAMEZY6lDpwMqTWutQZXtja7BHDJGs6PbbHCbndy6wMOpu89rLM74n0wHPA2AC2a7tjeNm_pf2w89IYaI</recordid><startdate>20191226</startdate><enddate>20191226</enddate><creator>Echave, Mari Carmen</creator><creator>Domingues, Rui M. A</creator><creator>Gómez-Florit, Manuel</creator><creator>Pedraz, José Luis</creator><creator>Reis, Rui L</creator><creator>Orive, Gorka</creator><creator>Gomes, Manuela E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3654-9906</orcidid><orcidid>https://orcid.org/0000-0001-7758-1251</orcidid><orcidid>https://orcid.org/0000-0003-1419-4822</orcidid></search><sort><creationdate>20191226</creationdate><title>Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering</title><author>Echave, Mari Carmen ; Domingues, Rui M. A ; Gómez-Florit, Manuel ; Pedraz, José Luis ; Reis, Rui L ; Orive, Gorka ; Gomes, Manuela E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Cellulose - chemistry</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>CRISPR-Cas Systems - physiology</topic><topic>Gelatin - chemistry</topic><topic>Gene Editing - methods</topic><topic>Humans</topic><topic>Hydrogels - chemistry</topic><topic>Microscopy</topic><topic>Nanoparticles - chemistry</topic><topic>Swine</topic><topic>Tendons - cytology</topic><topic>Tissue Engineering - methods</topic><topic>Transglutaminases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Echave, Mari Carmen</creatorcontrib><creatorcontrib>Domingues, Rui M. A</creatorcontrib><creatorcontrib>Gómez-Florit, Manuel</creatorcontrib><creatorcontrib>Pedraz, José Luis</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Orive, Gorka</creatorcontrib><creatorcontrib>Gomes, Manuela E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echave, Mari Carmen</au><au>Domingues, Rui M. A</au><au>Gómez-Florit, Manuel</au><au>Pedraz, José Luis</au><au>Reis, Rui L</au><au>Orive, Gorka</au><au>Gomes, Manuela E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-12-26</date><risdate>2019</risdate><volume>11</volume><issue>51</issue><spage>47771</spage><epage>47784</epage><pages>47771-47784</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, where sections with distinct composition and microstructure were integrated in a single unit. In each phase, hydroxyapatite particles or cellulose nanocrystals (CNC) were incorporated into an enzymatically cross-linked gelatin network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced with the incorporation of mineralized particles, and magnetic alignment of CNC resulted in anisotropic structure formation. The evaluation of the biological commitment with human adipose-derived stem cells toward the tendon-to-bone interface revealed an aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic phase, while the activity of the secreted alkaline phosphatase and the expression of osteopontin were induced in the mineralized phase. These results highlight the potential versatility offered by gelatin-transglutaminase enzyme tandem for the development of strategies that mimic the graded, composite, and complex intersections of the connective tissues.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31789494</pmid><doi>10.1021/acsami.9b17826</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3654-9906</orcidid><orcidid>https://orcid.org/0000-0001-7758-1251</orcidid><orcidid>https://orcid.org/0000-0003-1419-4822</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-12, Vol.11 (51), p.47771-47784 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2320641119 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Cellulose - chemistry CRISPR-Cas Systems - genetics CRISPR-Cas Systems - physiology Gelatin - chemistry Gene Editing - methods Humans Hydrogels - chemistry Microscopy Nanoparticles - chemistry Swine Tendons - cytology Tissue Engineering - methods Transglutaminases - metabolism |
title | Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biphasic%20Hydrogels%20Integrating%20Mineralized%20and%20Anisotropic%20Features%20for%20Interfacial%20Tissue%20Engineering&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Echave,%20Mari%20Carmen&rft.date=2019-12-26&rft.volume=11&rft.issue=51&rft.spage=47771&rft.epage=47784&rft.pages=47771-47784&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b17826&rft_dat=%3Cproquest_cross%3E2320641119%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a461t-a67ea1e79dd83678bcffcb0feca50f5e7ecd830b757c94e0063867a94466cecc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2320641119&rft_id=info:pmid/31789494&rfr_iscdi=true |