Loading…
Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL
Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic,...
Saved in:
Published in: | Blood 2020-02, Vol.135 (6), p.411-428 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3 |
container_end_page | 428 |
container_issue | 6 |
container_start_page | 411 |
container_title | Blood |
container_volume | 135 |
creator | Kwok, Marwan Oldreive, Ceri Rawstron, Andy C. Goel, Anshita Papatzikas, Grigorios Jones, Rhiannon E. Drennan, Samantha Agathanggelou, Angelo Sharma-Oates, Archana Evans, Paul Smith, Edward Dalal, Surita Mao, Jingwen Hollows, Robert Gordon, Naheema Hamada, Mayumi Davies, Nicholas J. Parry, Helen Beggs, Andrew D. Munir, Talha Moreton, Paul Paneesha, Shankara Pratt, Guy Taylor, A. Malcolm R. Forconi, Francesco Baird, Duncan M. Cazier, Jean-Baptiste Moss, Paul Hillmen, Peter Stankovic, Tatjana |
description | Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment.
•Spontaneously regressed tumors are composed of a formerly proliferating CLL clone that has transitioned into a quiescent state.•A microenvironmental stimulation change on an indolent genomic background state underpins clonal attrition in spontaneous CLL regression.
[Display omitted] |
doi_str_mv | 10.1182/blood.2019001262 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2321676205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120622595</els_id><sourcerecordid>2321676205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3</originalsourceid><addsrcrecordid>eNp1kDtrHDEUhUVwiNdO-lRGpZtxrqTRPNyZJQ_DQpqkFhrdO2uFGWktzS7sv4-ctePKhbgIvnPgfIx9FnAjRCe_DFOMeCNB9ABCNvIdWwktuwpAwhlbAUBT1X0rztlFzn8KUyupP7BzJdq-bgBWLN-HhbbJLv5A3AY7HbPPPI4872JYbKC4z3y92fBUKMrZx8Af_PZhKm_JfEuBFu9KEvnsXYoUDj7FMFMJT9yX8oS0o4AU3LH8n7o-svejnTJ9er6X7Pe3r7_WP6rNz-_367tN5VQvl2qoBxTYW9chOGmVGmuwGhUojWM3YItdPWrROYe17pVqey1acrbrEcWgR3XJrk-9uxQf95QXM_vsaJpOs4xUUjRtI0EXFE5omZBzotHskp9tOhoB5km1-afavKoukavn9v0wE_4PvLgtwO0JoLLx4CmZ7HzRQOgTucVg9G-3_wWFlJEn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321676205</pqid></control><display><type>article</type><title>Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL</title><source>ScienceDirect Journals</source><creator>Kwok, Marwan ; Oldreive, Ceri ; Rawstron, Andy C. ; Goel, Anshita ; Papatzikas, Grigorios ; Jones, Rhiannon E. ; Drennan, Samantha ; Agathanggelou, Angelo ; Sharma-Oates, Archana ; Evans, Paul ; Smith, Edward ; Dalal, Surita ; Mao, Jingwen ; Hollows, Robert ; Gordon, Naheema ; Hamada, Mayumi ; Davies, Nicholas J. ; Parry, Helen ; Beggs, Andrew D. ; Munir, Talha ; Moreton, Paul ; Paneesha, Shankara ; Pratt, Guy ; Taylor, A. Malcolm R. ; Forconi, Francesco ; Baird, Duncan M. ; Cazier, Jean-Baptiste ; Moss, Paul ; Hillmen, Peter ; Stankovic, Tatjana</creator><creatorcontrib>Kwok, Marwan ; Oldreive, Ceri ; Rawstron, Andy C. ; Goel, Anshita ; Papatzikas, Grigorios ; Jones, Rhiannon E. ; Drennan, Samantha ; Agathanggelou, Angelo ; Sharma-Oates, Archana ; Evans, Paul ; Smith, Edward ; Dalal, Surita ; Mao, Jingwen ; Hollows, Robert ; Gordon, Naheema ; Hamada, Mayumi ; Davies, Nicholas J. ; Parry, Helen ; Beggs, Andrew D. ; Munir, Talha ; Moreton, Paul ; Paneesha, Shankara ; Pratt, Guy ; Taylor, A. Malcolm R. ; Forconi, Francesco ; Baird, Duncan M. ; Cazier, Jean-Baptiste ; Moss, Paul ; Hillmen, Peter ; Stankovic, Tatjana</creatorcontrib><description>Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment.
•Spontaneously regressed tumors are composed of a formerly proliferating CLL clone that has transitioned into a quiescent state.•A microenvironmental stimulation change on an indolent genomic background state underpins clonal attrition in spontaneous CLL regression.
[Display omitted]</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood.2019001262</identifier><identifier>PMID: 31794600</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Cell Proliferation ; Female ; Gene Expression Regulation, Leukemic ; Humans ; Immunoglobulin Heavy Chains - genetics ; Immunoglobulin M - genetics ; Ki-67 Antigen - genetics ; Leukemia, Lymphocytic, Chronic, B-Cell - genetics ; Leukemia, Lymphocytic, Chronic, B-Cell - pathology ; Male ; Middle Aged ; Mutation ; Polymorphism, Single Nucleotide ; Receptors, CXCR4 - genetics ; Tumor Microenvironment</subject><ispartof>Blood, 2020-02, Vol.135 (6), p.411-428</ispartof><rights>2020 American Society of Hematology</rights><rights>2020 by The American Society of Hematology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3</citedby><cites>FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3</cites><orcidid>0000-0001-7581-9051 ; 0000-0002-7818-7595 ; 0000-0002-3985-5079 ; 0000-0003-0798-9790 ; 0000-0002-8993-7806 ; 0000-0002-7815-8970 ; 0000-0003-0784-2967 ; 0000-0001-8408-5467 ; 0000-0002-2211-1831 ; 0000-0002-3780-274X ; 0000-0002-9707-8167 ; 0000-0002-7446-011X ; 0000-0002-0163-4174 ; 0000-0002-6895-1967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006497120622595$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31794600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwok, Marwan</creatorcontrib><creatorcontrib>Oldreive, Ceri</creatorcontrib><creatorcontrib>Rawstron, Andy C.</creatorcontrib><creatorcontrib>Goel, Anshita</creatorcontrib><creatorcontrib>Papatzikas, Grigorios</creatorcontrib><creatorcontrib>Jones, Rhiannon E.</creatorcontrib><creatorcontrib>Drennan, Samantha</creatorcontrib><creatorcontrib>Agathanggelou, Angelo</creatorcontrib><creatorcontrib>Sharma-Oates, Archana</creatorcontrib><creatorcontrib>Evans, Paul</creatorcontrib><creatorcontrib>Smith, Edward</creatorcontrib><creatorcontrib>Dalal, Surita</creatorcontrib><creatorcontrib>Mao, Jingwen</creatorcontrib><creatorcontrib>Hollows, Robert</creatorcontrib><creatorcontrib>Gordon, Naheema</creatorcontrib><creatorcontrib>Hamada, Mayumi</creatorcontrib><creatorcontrib>Davies, Nicholas J.</creatorcontrib><creatorcontrib>Parry, Helen</creatorcontrib><creatorcontrib>Beggs, Andrew D.</creatorcontrib><creatorcontrib>Munir, Talha</creatorcontrib><creatorcontrib>Moreton, Paul</creatorcontrib><creatorcontrib>Paneesha, Shankara</creatorcontrib><creatorcontrib>Pratt, Guy</creatorcontrib><creatorcontrib>Taylor, A. Malcolm R.</creatorcontrib><creatorcontrib>Forconi, Francesco</creatorcontrib><creatorcontrib>Baird, Duncan M.</creatorcontrib><creatorcontrib>Cazier, Jean-Baptiste</creatorcontrib><creatorcontrib>Moss, Paul</creatorcontrib><creatorcontrib>Hillmen, Peter</creatorcontrib><creatorcontrib>Stankovic, Tatjana</creatorcontrib><title>Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL</title><title>Blood</title><addtitle>Blood</addtitle><description>Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment.
•Spontaneously regressed tumors are composed of a formerly proliferating CLL clone that has transitioned into a quiescent state.•A microenvironmental stimulation change on an indolent genomic background state underpins clonal attrition in spontaneous CLL regression.
[Display omitted]</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Cell Proliferation</subject><subject>Female</subject><subject>Gene Expression Regulation, Leukemic</subject><subject>Humans</subject><subject>Immunoglobulin Heavy Chains - genetics</subject><subject>Immunoglobulin M - genetics</subject><subject>Ki-67 Antigen - genetics</subject><subject>Leukemia, Lymphocytic, Chronic, B-Cell - genetics</subject><subject>Leukemia, Lymphocytic, Chronic, B-Cell - pathology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Receptors, CXCR4 - genetics</subject><subject>Tumor Microenvironment</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtrHDEUhUVwiNdO-lRGpZtxrqTRPNyZJQ_DQpqkFhrdO2uFGWktzS7sv4-ctePKhbgIvnPgfIx9FnAjRCe_DFOMeCNB9ABCNvIdWwktuwpAwhlbAUBT1X0rztlFzn8KUyupP7BzJdq-bgBWLN-HhbbJLv5A3AY7HbPPPI4872JYbKC4z3y92fBUKMrZx8Af_PZhKm_JfEuBFu9KEvnsXYoUDj7FMFMJT9yX8oS0o4AU3LH8n7o-svejnTJ9er6X7Pe3r7_WP6rNz-_367tN5VQvl2qoBxTYW9chOGmVGmuwGhUojWM3YItdPWrROYe17pVqey1acrbrEcWgR3XJrk-9uxQf95QXM_vsaJpOs4xUUjRtI0EXFE5omZBzotHskp9tOhoB5km1-afavKoukavn9v0wE_4PvLgtwO0JoLLx4CmZ7HzRQOgTucVg9G-3_wWFlJEn</recordid><startdate>20200206</startdate><enddate>20200206</enddate><creator>Kwok, Marwan</creator><creator>Oldreive, Ceri</creator><creator>Rawstron, Andy C.</creator><creator>Goel, Anshita</creator><creator>Papatzikas, Grigorios</creator><creator>Jones, Rhiannon E.</creator><creator>Drennan, Samantha</creator><creator>Agathanggelou, Angelo</creator><creator>Sharma-Oates, Archana</creator><creator>Evans, Paul</creator><creator>Smith, Edward</creator><creator>Dalal, Surita</creator><creator>Mao, Jingwen</creator><creator>Hollows, Robert</creator><creator>Gordon, Naheema</creator><creator>Hamada, Mayumi</creator><creator>Davies, Nicholas J.</creator><creator>Parry, Helen</creator><creator>Beggs, Andrew D.</creator><creator>Munir, Talha</creator><creator>Moreton, Paul</creator><creator>Paneesha, Shankara</creator><creator>Pratt, Guy</creator><creator>Taylor, A. Malcolm R.</creator><creator>Forconi, Francesco</creator><creator>Baird, Duncan M.</creator><creator>Cazier, Jean-Baptiste</creator><creator>Moss, Paul</creator><creator>Hillmen, Peter</creator><creator>Stankovic, Tatjana</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7581-9051</orcidid><orcidid>https://orcid.org/0000-0002-7818-7595</orcidid><orcidid>https://orcid.org/0000-0002-3985-5079</orcidid><orcidid>https://orcid.org/0000-0003-0798-9790</orcidid><orcidid>https://orcid.org/0000-0002-8993-7806</orcidid><orcidid>https://orcid.org/0000-0002-7815-8970</orcidid><orcidid>https://orcid.org/0000-0003-0784-2967</orcidid><orcidid>https://orcid.org/0000-0001-8408-5467</orcidid><orcidid>https://orcid.org/0000-0002-2211-1831</orcidid><orcidid>https://orcid.org/0000-0002-3780-274X</orcidid><orcidid>https://orcid.org/0000-0002-9707-8167</orcidid><orcidid>https://orcid.org/0000-0002-7446-011X</orcidid><orcidid>https://orcid.org/0000-0002-0163-4174</orcidid><orcidid>https://orcid.org/0000-0002-6895-1967</orcidid></search><sort><creationdate>20200206</creationdate><title>Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL</title><author>Kwok, Marwan ; Oldreive, Ceri ; Rawstron, Andy C. ; Goel, Anshita ; Papatzikas, Grigorios ; Jones, Rhiannon E. ; Drennan, Samantha ; Agathanggelou, Angelo ; Sharma-Oates, Archana ; Evans, Paul ; Smith, Edward ; Dalal, Surita ; Mao, Jingwen ; Hollows, Robert ; Gordon, Naheema ; Hamada, Mayumi ; Davies, Nicholas J. ; Parry, Helen ; Beggs, Andrew D. ; Munir, Talha ; Moreton, Paul ; Paneesha, Shankara ; Pratt, Guy ; Taylor, A. Malcolm R. ; Forconi, Francesco ; Baird, Duncan M. ; Cazier, Jean-Baptiste ; Moss, Paul ; Hillmen, Peter ; Stankovic, Tatjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Cell Proliferation</topic><topic>Female</topic><topic>Gene Expression Regulation, Leukemic</topic><topic>Humans</topic><topic>Immunoglobulin Heavy Chains - genetics</topic><topic>Immunoglobulin M - genetics</topic><topic>Ki-67 Antigen - genetics</topic><topic>Leukemia, Lymphocytic, Chronic, B-Cell - genetics</topic><topic>Leukemia, Lymphocytic, Chronic, B-Cell - pathology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Receptors, CXCR4 - genetics</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwok, Marwan</creatorcontrib><creatorcontrib>Oldreive, Ceri</creatorcontrib><creatorcontrib>Rawstron, Andy C.</creatorcontrib><creatorcontrib>Goel, Anshita</creatorcontrib><creatorcontrib>Papatzikas, Grigorios</creatorcontrib><creatorcontrib>Jones, Rhiannon E.</creatorcontrib><creatorcontrib>Drennan, Samantha</creatorcontrib><creatorcontrib>Agathanggelou, Angelo</creatorcontrib><creatorcontrib>Sharma-Oates, Archana</creatorcontrib><creatorcontrib>Evans, Paul</creatorcontrib><creatorcontrib>Smith, Edward</creatorcontrib><creatorcontrib>Dalal, Surita</creatorcontrib><creatorcontrib>Mao, Jingwen</creatorcontrib><creatorcontrib>Hollows, Robert</creatorcontrib><creatorcontrib>Gordon, Naheema</creatorcontrib><creatorcontrib>Hamada, Mayumi</creatorcontrib><creatorcontrib>Davies, Nicholas J.</creatorcontrib><creatorcontrib>Parry, Helen</creatorcontrib><creatorcontrib>Beggs, Andrew D.</creatorcontrib><creatorcontrib>Munir, Talha</creatorcontrib><creatorcontrib>Moreton, Paul</creatorcontrib><creatorcontrib>Paneesha, Shankara</creatorcontrib><creatorcontrib>Pratt, Guy</creatorcontrib><creatorcontrib>Taylor, A. Malcolm R.</creatorcontrib><creatorcontrib>Forconi, Francesco</creatorcontrib><creatorcontrib>Baird, Duncan M.</creatorcontrib><creatorcontrib>Cazier, Jean-Baptiste</creatorcontrib><creatorcontrib>Moss, Paul</creatorcontrib><creatorcontrib>Hillmen, Peter</creatorcontrib><creatorcontrib>Stankovic, Tatjana</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwok, Marwan</au><au>Oldreive, Ceri</au><au>Rawstron, Andy C.</au><au>Goel, Anshita</au><au>Papatzikas, Grigorios</au><au>Jones, Rhiannon E.</au><au>Drennan, Samantha</au><au>Agathanggelou, Angelo</au><au>Sharma-Oates, Archana</au><au>Evans, Paul</au><au>Smith, Edward</au><au>Dalal, Surita</au><au>Mao, Jingwen</au><au>Hollows, Robert</au><au>Gordon, Naheema</au><au>Hamada, Mayumi</au><au>Davies, Nicholas J.</au><au>Parry, Helen</au><au>Beggs, Andrew D.</au><au>Munir, Talha</au><au>Moreton, Paul</au><au>Paneesha, Shankara</au><au>Pratt, Guy</au><au>Taylor, A. Malcolm R.</au><au>Forconi, Francesco</au><au>Baird, Duncan M.</au><au>Cazier, Jean-Baptiste</au><au>Moss, Paul</au><au>Hillmen, Peter</au><au>Stankovic, Tatjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2020-02-06</date><risdate>2020</risdate><volume>135</volume><issue>6</issue><spage>411</spage><epage>428</epage><pages>411-428</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment.
•Spontaneously regressed tumors are composed of a formerly proliferating CLL clone that has transitioned into a quiescent state.•A microenvironmental stimulation change on an indolent genomic background state underpins clonal attrition in spontaneous CLL regression.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31794600</pmid><doi>10.1182/blood.2019001262</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7581-9051</orcidid><orcidid>https://orcid.org/0000-0002-7818-7595</orcidid><orcidid>https://orcid.org/0000-0002-3985-5079</orcidid><orcidid>https://orcid.org/0000-0003-0798-9790</orcidid><orcidid>https://orcid.org/0000-0002-8993-7806</orcidid><orcidid>https://orcid.org/0000-0002-7815-8970</orcidid><orcidid>https://orcid.org/0000-0003-0784-2967</orcidid><orcidid>https://orcid.org/0000-0001-8408-5467</orcidid><orcidid>https://orcid.org/0000-0002-2211-1831</orcidid><orcidid>https://orcid.org/0000-0002-3780-274X</orcidid><orcidid>https://orcid.org/0000-0002-9707-8167</orcidid><orcidid>https://orcid.org/0000-0002-7446-011X</orcidid><orcidid>https://orcid.org/0000-0002-0163-4174</orcidid><orcidid>https://orcid.org/0000-0002-6895-1967</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2020-02, Vol.135 (6), p.411-428 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_proquest_miscellaneous_2321676205 |
source | ScienceDirect Journals |
subjects | Adult Aged Aged, 80 and over Cell Proliferation Female Gene Expression Regulation, Leukemic Humans Immunoglobulin Heavy Chains - genetics Immunoglobulin M - genetics Ki-67 Antigen - genetics Leukemia, Lymphocytic, Chronic, B-Cell - genetics Leukemia, Lymphocytic, Chronic, B-Cell - pathology Male Middle Aged Mutation Polymorphism, Single Nucleotide Receptors, CXCR4 - genetics Tumor Microenvironment |
title | Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20analysis%20of%20spontaneous%20CLL%20regression%20highlights%20genetic%20and%20microenvironmental%20interdependency%20in%20CLL&rft.jtitle=Blood&rft.au=Kwok,%20Marwan&rft.date=2020-02-06&rft.volume=135&rft.issue=6&rft.spage=411&rft.epage=428&rft.pages=411-428&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood.2019001262&rft_dat=%3Cproquest_cross%3E2321676205%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321676205&rft_id=info:pmid/31794600&rfr_iscdi=true |