Loading…

Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL

Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic,...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2020-02, Vol.135 (6), p.411-428
Main Authors: Kwok, Marwan, Oldreive, Ceri, Rawstron, Andy C., Goel, Anshita, Papatzikas, Grigorios, Jones, Rhiannon E., Drennan, Samantha, Agathanggelou, Angelo, Sharma-Oates, Archana, Evans, Paul, Smith, Edward, Dalal, Surita, Mao, Jingwen, Hollows, Robert, Gordon, Naheema, Hamada, Mayumi, Davies, Nicholas J., Parry, Helen, Beggs, Andrew D., Munir, Talha, Moreton, Paul, Paneesha, Shankara, Pratt, Guy, Taylor, A. Malcolm R., Forconi, Francesco, Baird, Duncan M., Cazier, Jean-Baptiste, Moss, Paul, Hillmen, Peter, Stankovic, Tatjana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3
cites cdi_FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3
container_end_page 428
container_issue 6
container_start_page 411
container_title Blood
container_volume 135
creator Kwok, Marwan
Oldreive, Ceri
Rawstron, Andy C.
Goel, Anshita
Papatzikas, Grigorios
Jones, Rhiannon E.
Drennan, Samantha
Agathanggelou, Angelo
Sharma-Oates, Archana
Evans, Paul
Smith, Edward
Dalal, Surita
Mao, Jingwen
Hollows, Robert
Gordon, Naheema
Hamada, Mayumi
Davies, Nicholas J.
Parry, Helen
Beggs, Andrew D.
Munir, Talha
Moreton, Paul
Paneesha, Shankara
Pratt, Guy
Taylor, A. Malcolm R.
Forconi, Francesco
Baird, Duncan M.
Cazier, Jean-Baptiste
Moss, Paul
Hillmen, Peter
Stankovic, Tatjana
description Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment. •Spontaneously regressed tumors are composed of a formerly proliferating CLL clone that has transitioned into a quiescent state.•A microenvironmental stimulation change on an indolent genomic background state underpins clonal attrition in spontaneous CLL regression. [Display omitted]
doi_str_mv 10.1182/blood.2019001262
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2321676205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120622595</els_id><sourcerecordid>2321676205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3</originalsourceid><addsrcrecordid>eNp1kDtrHDEUhUVwiNdO-lRGpZtxrqTRPNyZJQ_DQpqkFhrdO2uFGWktzS7sv4-ctePKhbgIvnPgfIx9FnAjRCe_DFOMeCNB9ABCNvIdWwktuwpAwhlbAUBT1X0rztlFzn8KUyupP7BzJdq-bgBWLN-HhbbJLv5A3AY7HbPPPI4872JYbKC4z3y92fBUKMrZx8Af_PZhKm_JfEuBFu9KEvnsXYoUDj7FMFMJT9yX8oS0o4AU3LH8n7o-svejnTJ9er6X7Pe3r7_WP6rNz-_367tN5VQvl2qoBxTYW9chOGmVGmuwGhUojWM3YItdPWrROYe17pVqey1acrbrEcWgR3XJrk-9uxQf95QXM_vsaJpOs4xUUjRtI0EXFE5omZBzotHskp9tOhoB5km1-afavKoukavn9v0wE_4PvLgtwO0JoLLx4CmZ7HzRQOgTucVg9G-3_wWFlJEn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321676205</pqid></control><display><type>article</type><title>Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL</title><source>ScienceDirect Journals</source><creator>Kwok, Marwan ; Oldreive, Ceri ; Rawstron, Andy C. ; Goel, Anshita ; Papatzikas, Grigorios ; Jones, Rhiannon E. ; Drennan, Samantha ; Agathanggelou, Angelo ; Sharma-Oates, Archana ; Evans, Paul ; Smith, Edward ; Dalal, Surita ; Mao, Jingwen ; Hollows, Robert ; Gordon, Naheema ; Hamada, Mayumi ; Davies, Nicholas J. ; Parry, Helen ; Beggs, Andrew D. ; Munir, Talha ; Moreton, Paul ; Paneesha, Shankara ; Pratt, Guy ; Taylor, A. Malcolm R. ; Forconi, Francesco ; Baird, Duncan M. ; Cazier, Jean-Baptiste ; Moss, Paul ; Hillmen, Peter ; Stankovic, Tatjana</creator><creatorcontrib>Kwok, Marwan ; Oldreive, Ceri ; Rawstron, Andy C. ; Goel, Anshita ; Papatzikas, Grigorios ; Jones, Rhiannon E. ; Drennan, Samantha ; Agathanggelou, Angelo ; Sharma-Oates, Archana ; Evans, Paul ; Smith, Edward ; Dalal, Surita ; Mao, Jingwen ; Hollows, Robert ; Gordon, Naheema ; Hamada, Mayumi ; Davies, Nicholas J. ; Parry, Helen ; Beggs, Andrew D. ; Munir, Talha ; Moreton, Paul ; Paneesha, Shankara ; Pratt, Guy ; Taylor, A. Malcolm R. ; Forconi, Francesco ; Baird, Duncan M. ; Cazier, Jean-Baptiste ; Moss, Paul ; Hillmen, Peter ; Stankovic, Tatjana</creatorcontrib><description>Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment. •Spontaneously regressed tumors are composed of a formerly proliferating CLL clone that has transitioned into a quiescent state.•A microenvironmental stimulation change on an indolent genomic background state underpins clonal attrition in spontaneous CLL regression. [Display omitted]</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood.2019001262</identifier><identifier>PMID: 31794600</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Cell Proliferation ; Female ; Gene Expression Regulation, Leukemic ; Humans ; Immunoglobulin Heavy Chains - genetics ; Immunoglobulin M - genetics ; Ki-67 Antigen - genetics ; Leukemia, Lymphocytic, Chronic, B-Cell - genetics ; Leukemia, Lymphocytic, Chronic, B-Cell - pathology ; Male ; Middle Aged ; Mutation ; Polymorphism, Single Nucleotide ; Receptors, CXCR4 - genetics ; Tumor Microenvironment</subject><ispartof>Blood, 2020-02, Vol.135 (6), p.411-428</ispartof><rights>2020 American Society of Hematology</rights><rights>2020 by The American Society of Hematology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3</citedby><cites>FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3</cites><orcidid>0000-0001-7581-9051 ; 0000-0002-7818-7595 ; 0000-0002-3985-5079 ; 0000-0003-0798-9790 ; 0000-0002-8993-7806 ; 0000-0002-7815-8970 ; 0000-0003-0784-2967 ; 0000-0001-8408-5467 ; 0000-0002-2211-1831 ; 0000-0002-3780-274X ; 0000-0002-9707-8167 ; 0000-0002-7446-011X ; 0000-0002-0163-4174 ; 0000-0002-6895-1967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006497120622595$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31794600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwok, Marwan</creatorcontrib><creatorcontrib>Oldreive, Ceri</creatorcontrib><creatorcontrib>Rawstron, Andy C.</creatorcontrib><creatorcontrib>Goel, Anshita</creatorcontrib><creatorcontrib>Papatzikas, Grigorios</creatorcontrib><creatorcontrib>Jones, Rhiannon E.</creatorcontrib><creatorcontrib>Drennan, Samantha</creatorcontrib><creatorcontrib>Agathanggelou, Angelo</creatorcontrib><creatorcontrib>Sharma-Oates, Archana</creatorcontrib><creatorcontrib>Evans, Paul</creatorcontrib><creatorcontrib>Smith, Edward</creatorcontrib><creatorcontrib>Dalal, Surita</creatorcontrib><creatorcontrib>Mao, Jingwen</creatorcontrib><creatorcontrib>Hollows, Robert</creatorcontrib><creatorcontrib>Gordon, Naheema</creatorcontrib><creatorcontrib>Hamada, Mayumi</creatorcontrib><creatorcontrib>Davies, Nicholas J.</creatorcontrib><creatorcontrib>Parry, Helen</creatorcontrib><creatorcontrib>Beggs, Andrew D.</creatorcontrib><creatorcontrib>Munir, Talha</creatorcontrib><creatorcontrib>Moreton, Paul</creatorcontrib><creatorcontrib>Paneesha, Shankara</creatorcontrib><creatorcontrib>Pratt, Guy</creatorcontrib><creatorcontrib>Taylor, A. Malcolm R.</creatorcontrib><creatorcontrib>Forconi, Francesco</creatorcontrib><creatorcontrib>Baird, Duncan M.</creatorcontrib><creatorcontrib>Cazier, Jean-Baptiste</creatorcontrib><creatorcontrib>Moss, Paul</creatorcontrib><creatorcontrib>Hillmen, Peter</creatorcontrib><creatorcontrib>Stankovic, Tatjana</creatorcontrib><title>Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL</title><title>Blood</title><addtitle>Blood</addtitle><description>Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment. •Spontaneously regressed tumors are composed of a formerly proliferating CLL clone that has transitioned into a quiescent state.•A microenvironmental stimulation change on an indolent genomic background state underpins clonal attrition in spontaneous CLL regression. [Display omitted]</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Cell Proliferation</subject><subject>Female</subject><subject>Gene Expression Regulation, Leukemic</subject><subject>Humans</subject><subject>Immunoglobulin Heavy Chains - genetics</subject><subject>Immunoglobulin M - genetics</subject><subject>Ki-67 Antigen - genetics</subject><subject>Leukemia, Lymphocytic, Chronic, B-Cell - genetics</subject><subject>Leukemia, Lymphocytic, Chronic, B-Cell - pathology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Receptors, CXCR4 - genetics</subject><subject>Tumor Microenvironment</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtrHDEUhUVwiNdO-lRGpZtxrqTRPNyZJQ_DQpqkFhrdO2uFGWktzS7sv4-ctePKhbgIvnPgfIx9FnAjRCe_DFOMeCNB9ABCNvIdWwktuwpAwhlbAUBT1X0rztlFzn8KUyupP7BzJdq-bgBWLN-HhbbJLv5A3AY7HbPPPI4872JYbKC4z3y92fBUKMrZx8Af_PZhKm_JfEuBFu9KEvnsXYoUDj7FMFMJT9yX8oS0o4AU3LH8n7o-svejnTJ9er6X7Pe3r7_WP6rNz-_367tN5VQvl2qoBxTYW9chOGmVGmuwGhUojWM3YItdPWrROYe17pVqey1acrbrEcWgR3XJrk-9uxQf95QXM_vsaJpOs4xUUjRtI0EXFE5omZBzotHskp9tOhoB5km1-afavKoukavn9v0wE_4PvLgtwO0JoLLx4CmZ7HzRQOgTucVg9G-3_wWFlJEn</recordid><startdate>20200206</startdate><enddate>20200206</enddate><creator>Kwok, Marwan</creator><creator>Oldreive, Ceri</creator><creator>Rawstron, Andy C.</creator><creator>Goel, Anshita</creator><creator>Papatzikas, Grigorios</creator><creator>Jones, Rhiannon E.</creator><creator>Drennan, Samantha</creator><creator>Agathanggelou, Angelo</creator><creator>Sharma-Oates, Archana</creator><creator>Evans, Paul</creator><creator>Smith, Edward</creator><creator>Dalal, Surita</creator><creator>Mao, Jingwen</creator><creator>Hollows, Robert</creator><creator>Gordon, Naheema</creator><creator>Hamada, Mayumi</creator><creator>Davies, Nicholas J.</creator><creator>Parry, Helen</creator><creator>Beggs, Andrew D.</creator><creator>Munir, Talha</creator><creator>Moreton, Paul</creator><creator>Paneesha, Shankara</creator><creator>Pratt, Guy</creator><creator>Taylor, A. Malcolm R.</creator><creator>Forconi, Francesco</creator><creator>Baird, Duncan M.</creator><creator>Cazier, Jean-Baptiste</creator><creator>Moss, Paul</creator><creator>Hillmen, Peter</creator><creator>Stankovic, Tatjana</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7581-9051</orcidid><orcidid>https://orcid.org/0000-0002-7818-7595</orcidid><orcidid>https://orcid.org/0000-0002-3985-5079</orcidid><orcidid>https://orcid.org/0000-0003-0798-9790</orcidid><orcidid>https://orcid.org/0000-0002-8993-7806</orcidid><orcidid>https://orcid.org/0000-0002-7815-8970</orcidid><orcidid>https://orcid.org/0000-0003-0784-2967</orcidid><orcidid>https://orcid.org/0000-0001-8408-5467</orcidid><orcidid>https://orcid.org/0000-0002-2211-1831</orcidid><orcidid>https://orcid.org/0000-0002-3780-274X</orcidid><orcidid>https://orcid.org/0000-0002-9707-8167</orcidid><orcidid>https://orcid.org/0000-0002-7446-011X</orcidid><orcidid>https://orcid.org/0000-0002-0163-4174</orcidid><orcidid>https://orcid.org/0000-0002-6895-1967</orcidid></search><sort><creationdate>20200206</creationdate><title>Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL</title><author>Kwok, Marwan ; Oldreive, Ceri ; Rawstron, Andy C. ; Goel, Anshita ; Papatzikas, Grigorios ; Jones, Rhiannon E. ; Drennan, Samantha ; Agathanggelou, Angelo ; Sharma-Oates, Archana ; Evans, Paul ; Smith, Edward ; Dalal, Surita ; Mao, Jingwen ; Hollows, Robert ; Gordon, Naheema ; Hamada, Mayumi ; Davies, Nicholas J. ; Parry, Helen ; Beggs, Andrew D. ; Munir, Talha ; Moreton, Paul ; Paneesha, Shankara ; Pratt, Guy ; Taylor, A. Malcolm R. ; Forconi, Francesco ; Baird, Duncan M. ; Cazier, Jean-Baptiste ; Moss, Paul ; Hillmen, Peter ; Stankovic, Tatjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Cell Proliferation</topic><topic>Female</topic><topic>Gene Expression Regulation, Leukemic</topic><topic>Humans</topic><topic>Immunoglobulin Heavy Chains - genetics</topic><topic>Immunoglobulin M - genetics</topic><topic>Ki-67 Antigen - genetics</topic><topic>Leukemia, Lymphocytic, Chronic, B-Cell - genetics</topic><topic>Leukemia, Lymphocytic, Chronic, B-Cell - pathology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Receptors, CXCR4 - genetics</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwok, Marwan</creatorcontrib><creatorcontrib>Oldreive, Ceri</creatorcontrib><creatorcontrib>Rawstron, Andy C.</creatorcontrib><creatorcontrib>Goel, Anshita</creatorcontrib><creatorcontrib>Papatzikas, Grigorios</creatorcontrib><creatorcontrib>Jones, Rhiannon E.</creatorcontrib><creatorcontrib>Drennan, Samantha</creatorcontrib><creatorcontrib>Agathanggelou, Angelo</creatorcontrib><creatorcontrib>Sharma-Oates, Archana</creatorcontrib><creatorcontrib>Evans, Paul</creatorcontrib><creatorcontrib>Smith, Edward</creatorcontrib><creatorcontrib>Dalal, Surita</creatorcontrib><creatorcontrib>Mao, Jingwen</creatorcontrib><creatorcontrib>Hollows, Robert</creatorcontrib><creatorcontrib>Gordon, Naheema</creatorcontrib><creatorcontrib>Hamada, Mayumi</creatorcontrib><creatorcontrib>Davies, Nicholas J.</creatorcontrib><creatorcontrib>Parry, Helen</creatorcontrib><creatorcontrib>Beggs, Andrew D.</creatorcontrib><creatorcontrib>Munir, Talha</creatorcontrib><creatorcontrib>Moreton, Paul</creatorcontrib><creatorcontrib>Paneesha, Shankara</creatorcontrib><creatorcontrib>Pratt, Guy</creatorcontrib><creatorcontrib>Taylor, A. Malcolm R.</creatorcontrib><creatorcontrib>Forconi, Francesco</creatorcontrib><creatorcontrib>Baird, Duncan M.</creatorcontrib><creatorcontrib>Cazier, Jean-Baptiste</creatorcontrib><creatorcontrib>Moss, Paul</creatorcontrib><creatorcontrib>Hillmen, Peter</creatorcontrib><creatorcontrib>Stankovic, Tatjana</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwok, Marwan</au><au>Oldreive, Ceri</au><au>Rawstron, Andy C.</au><au>Goel, Anshita</au><au>Papatzikas, Grigorios</au><au>Jones, Rhiannon E.</au><au>Drennan, Samantha</au><au>Agathanggelou, Angelo</au><au>Sharma-Oates, Archana</au><au>Evans, Paul</au><au>Smith, Edward</au><au>Dalal, Surita</au><au>Mao, Jingwen</au><au>Hollows, Robert</au><au>Gordon, Naheema</au><au>Hamada, Mayumi</au><au>Davies, Nicholas J.</au><au>Parry, Helen</au><au>Beggs, Andrew D.</au><au>Munir, Talha</au><au>Moreton, Paul</au><au>Paneesha, Shankara</au><au>Pratt, Guy</au><au>Taylor, A. Malcolm R.</au><au>Forconi, Francesco</au><au>Baird, Duncan M.</au><au>Cazier, Jean-Baptiste</au><au>Moss, Paul</au><au>Hillmen, Peter</au><au>Stankovic, Tatjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2020-02-06</date><risdate>2020</risdate><volume>135</volume><issue>6</issue><spage>411</spage><epage>428</epage><pages>411-428</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Spontaneous regression is a recognized phenomenon in chronic lymphocytic leukemia (CLL) but its biological basis remains unknown. We undertook a detailed investigation of the biological and clinical features of 20 spontaneous CLL regression cases incorporating phenotypic, functional, transcriptomic, and genomic studies at sequential time points. All spontaneously regressed tumors were IGHV-mutated with no restricted IGHV usage or B-cell receptor (BCR) stereotypy. They exhibited shortened telomeres similar to nonregressing CLL, indicating prior proliferation. They also displayed low Ki-67, CD49d, cell-surface immunoglobulin M (IgM) expression and IgM-signaling response but high CXCR4 expression, indicating low proliferative activity associated with poor migration to proliferation centers, with these features becoming increasingly marked during regression. Spontaneously regressed CLL displayed a transcriptome profile characterized by downregulation of metabolic processes as well as MYC and its downstream targets compared with nonregressing CLL. Moreover, spontaneous regression was associated with reversal of T-cell exhaustion features including reduced programmed cell death 1 expression and increased T-cell proliferation. Interestingly, archetypal CLL genomic aberrations including HIST1H1B and TP53 mutations and del(13q14) were found in some spontaneously regressing tumors, but genetic composition remained stable during regression. Conversely, a single case of CLL relapse following spontaneous regression was associated with increased BCR signaling, CLL proliferation, and clonal evolution. These observations indicate that spontaneously regressing CLL appear to undergo a period of proliferation before entering a more quiescent state, and that a complex interaction between genomic alterations and the microenvironment determines disease course. Together, the findings provide novel insight into the biological processes underpinning spontaneous CLL regression, with implications for CLL treatment. •Spontaneously regressed tumors are composed of a formerly proliferating CLL clone that has transitioned into a quiescent state.•A microenvironmental stimulation change on an indolent genomic background state underpins clonal attrition in spontaneous CLL regression. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31794600</pmid><doi>10.1182/blood.2019001262</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7581-9051</orcidid><orcidid>https://orcid.org/0000-0002-7818-7595</orcidid><orcidid>https://orcid.org/0000-0002-3985-5079</orcidid><orcidid>https://orcid.org/0000-0003-0798-9790</orcidid><orcidid>https://orcid.org/0000-0002-8993-7806</orcidid><orcidid>https://orcid.org/0000-0002-7815-8970</orcidid><orcidid>https://orcid.org/0000-0003-0784-2967</orcidid><orcidid>https://orcid.org/0000-0001-8408-5467</orcidid><orcidid>https://orcid.org/0000-0002-2211-1831</orcidid><orcidid>https://orcid.org/0000-0002-3780-274X</orcidid><orcidid>https://orcid.org/0000-0002-9707-8167</orcidid><orcidid>https://orcid.org/0000-0002-7446-011X</orcidid><orcidid>https://orcid.org/0000-0002-0163-4174</orcidid><orcidid>https://orcid.org/0000-0002-6895-1967</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2020-02, Vol.135 (6), p.411-428
issn 0006-4971
1528-0020
language eng
recordid cdi_proquest_miscellaneous_2321676205
source ScienceDirect Journals
subjects Adult
Aged
Aged, 80 and over
Cell Proliferation
Female
Gene Expression Regulation, Leukemic
Humans
Immunoglobulin Heavy Chains - genetics
Immunoglobulin M - genetics
Ki-67 Antigen - genetics
Leukemia, Lymphocytic, Chronic, B-Cell - genetics
Leukemia, Lymphocytic, Chronic, B-Cell - pathology
Male
Middle Aged
Mutation
Polymorphism, Single Nucleotide
Receptors, CXCR4 - genetics
Tumor Microenvironment
title Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20analysis%20of%20spontaneous%20CLL%20regression%20highlights%20genetic%20and%20microenvironmental%20interdependency%20in%20CLL&rft.jtitle=Blood&rft.au=Kwok,%20Marwan&rft.date=2020-02-06&rft.volume=135&rft.issue=6&rft.spage=411&rft.epage=428&rft.pages=411-428&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood.2019001262&rft_dat=%3Cproquest_cross%3E2321676205%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-b4bd1d9ac8d0c2a33f40a5d3035df8bd7d84f518ccd4593379517eca89dd1b5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2321676205&rft_id=info:pmid/31794600&rfr_iscdi=true