Loading…

Rotational, Vibrational, and Electronic Modulations in N_{2}^{+} Lasing at 391 nm: Evidence of Coherent B^{2}Σ_{u}^{+}-X^{2}Σ_{g}^{+}-A^{2}Π_{u} Coupling

We investigate lasing of a N_{2} gas induced by intense few-cycle near-IR laser pulses. By the pump-probe measurements, we reveal that the intensity of the B^{2}Σ_{u}^{+}-X^{2}Σ_{g}^{+} lasing emission of N_{2}^{+} oscillates at high (0.3-0.5 PHz), medium (50-75 THz), and low (∼3  THz) frequencies,...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2019-11, Vol.123 (20), p.203201-203201
Main Authors: Ando, Toshiaki, Lötstedt, Erik, Iwasaki, Atsushi, Li, Helong, Fu, Yao, Wang, Siqi, Xu, Huailiang, Yamanouchi, Kaoru
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate lasing of a N_{2} gas induced by intense few-cycle near-IR laser pulses. By the pump-probe measurements, we reveal that the intensity of the B^{2}Σ_{u}^{+}-X^{2}Σ_{g}^{+} lasing emission of N_{2}^{+} oscillates at high (0.3-0.5 PHz), medium (50-75 THz), and low (∼3  THz) frequencies, corresponding to the energy separations between the rovibrational levels of the A^{2}Π_{u} and X^{2}Σ_{g}^{+} states. By solving the time-dependent Schrödinger equation, we reproduce the oscillations in the three different frequency ranges and show that the coherent population transfer among the three electronic states of N_{2}^{+} creates the population inversion between the B^{2}Σ_{u}^{+} and X^{2}Σ_{g}^{+} states, resulting in the lasing at 391 nm.
ISSN:1079-7114
DOI:10.1103/PhysRevLett.123.203201