Loading…
A study on the spectral, microstructural, and magnetic properties of Eu–Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites synthesized by an ultrasonic-assisted approach
•SrFe12−xEuxNdxO19 hexaferrites were synthesized via ultrasonic assisted approach.•The structure, microstructure, and magnetic properties have been investigated.•M-H loops revealed hard ferrimagnetic behavior for all products at T = 300 and 10 K.•The products are promising candidates in the high-den...
Saved in:
Published in: | Ultrasonics sonochemistry 2020-04, Vol.62, p.104847-104847, Article 104847 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •SrFe12−xEuxNdxO19 hexaferrites were synthesized via ultrasonic assisted approach.•The structure, microstructure, and magnetic properties have been investigated.•M-H loops revealed hard ferrimagnetic behavior for all products at T = 300 and 10 K.•The products are promising candidates in the high-density recording media devices.
In this study, an examination on the spectral, microstructural, and magnetic characteristics of Eu–Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites (Ba0.5Sr0.5NdxEuxFe12−2xO19 (x = 0.00–0.05) HFs) fabricated by an ultrasonic-assisted approach has been presented. An UZ SONOPULS HD 2070 ultrasonic homogenizer with frequency of 20 kHz and power of 70 W was used. The chemical bonding, structure and the morphology of the products were evaluated by Fourier-Transform Infrared (FT-IR) Spectroscopy, XRD (X-ray diffraction), scanning and transmission electron microscopy and techniques. The textural properties of the prepared nanomaterials were examined by using the Brunauer-Emmett-Teller (BET) method. The magnetic properties were studied using a vibrating sample magnetometer (VSM) at room temperature (RT) and low temperature 10 K. The magnitudes of various magnetic parameters including Ms (saturation magnetization), Mr (remanence) and Hc (coercivity) were estimated and evaluated. The M-H loops revealed the hard ferrimagnetic nature for all products at both temperatures. The Ms and Mr values showed a decreasing tendency with increasing degree of Eu3+ and Nd3+ substitutions whereas Hc values displayed an increasing trend. At RT, Ms, Mr and Hc values lie in the ranges of 63.0–68.8 emu·g−1, 24.6–39.2 emu·g−1 and 2252.4–2782.1 Oe, respectively. At 10 K, the values of Ms, Mr and Hc lie between 87.5–97.1 emu·g−1, 33.5–40.1 emu·g−1 and 2060.6–2417.2 Oe, respectively. The observed magnetic properties make the prepared products promising candidates to be applied in the recording media. |
---|---|
ISSN: | 1350-4177 1873-2828 |
DOI: | 10.1016/j.ultsonch.2019.104847 |