Loading…

Atomic force microscopy measurements of anionic liposomes reveal the effect of liposomal rigidity on antigen-specific regulatory T cell responses

Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is often associated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can...

Full description

Saved in:
Bibliographic Details
Published in:Journal of controlled release 2020-02, Vol.318, p.246-255
Main Authors: Benne, Naomi, Leboux, Romain J.T., Glandrup, Marco, van Duijn, Janine, Lozano Vigario, Fernando, Neustrup, Malene Aaby, Romeijn, Stefan, Galli, Federica, Kuiper, Johan, Jiskoot, Wim, Slütter, Bram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is often associated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can induce strong antigen-specific Treg responses. We hypothesized that altering the rigidity of these liposomes while maintaining their size and surface charge would affect their capability of inducing Treg responses. The rigidity of liposomes is affected in part by the length and saturation of carbon chains of the phospholipids in the bilayer, and in part by the presence of cholesterol. We used atomic force microscopy (AFM) to measure the rigidity of anionic OVA323-containing liposomes composed of different types of PC and PG, with or without cholesterol, in a molar ratio of 4:1(:2) distearoyl (DS)PC:DSPG (Young's modulus (YM) 3611 ± 1271 kPa), DSPC:DSPG:CHOL (1498 ± 531 kPa), DSPC:dipalmitoyl (DP)PG:CHOL (1208 ± 538), DPPC:DPPG:CHOL (1195 ± 348 kPa), DSPC:dioleoyl (DO)PG:CHOL (825 ± 307 kPa), DOPC:DOPG:CHOL (911 ± 447 kPa), and DOPC:DOPG (494 ± 365 kPa). Next, we assessed if rigidity affects the association of liposomes to bone marrow-derived dendritic cells (BMDCs) in vitro. Aside from DOPC:DOPG liposomes, we observed a positive correlation between liposomal rigidity and cellular association. Finally, we show that rigidity positively correlates with Treg responses in vitro in murine DCs and in vivo in mice. Our findings underline the suitability of AFM to measure liposome rigidity and the importance of this parameter when designing liposomes as a vaccine delivery system. [Display omitted] •Atomic Force Microscopy method for determining the rigidity of anionic liposomes.•Rigid liposomes associated more effectively with antigen presenting cells.•Liposomal rigidity correlates with induction of regulatory T-cells in vivo.
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2019.12.003