Loading…

The amino acid derivative reactivity assay with fluorescence detection and its application to multi-constituent substances

The Amino acid Derivative Reactivity Assay (ADRA) is an in chemico alternative to animal testing for the prediction of skin sensitization potential. Although co-elution of test chemicals and nucleophilic reagents during HPLC analysis is sometimes problematic when using the Direct Peptide Reactivity...

Full description

Saved in:
Bibliographic Details
Published in:Journal of toxicological sciences 2019, Vol.44(12), pp.821-832
Main Authors: Wanibuchi, Sayaka, Yamamoto, Yusuke, Sato, Ayako, Kasahara, Toshihiko, Fujita, Masaharu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Amino acid Derivative Reactivity Assay (ADRA) is an in chemico alternative to animal testing for the prediction of skin sensitization potential. Although co-elution of test chemicals and nucleophilic reagents during HPLC analysis is sometimes problematic when using the Direct Peptide Reactivity Assay (DPRA), it rarely occurs when using ADRA. Nevertheless, the application of either of these tests to multi-constituent substances requires nucleophilic reagents capable of selective detection. With this issue in mind, the authors developed an ADRA fluorescence detection method (ADRA-FL), which utilizes the natural fluorescence of ADRA nucleophilic reagents. In this study, we demonstrate the efficacy of ADRA-FL by testing 82 test chemicals used in the development of both DPRA and the conventional ADRA (ADRA-UV) as well as establish a threshold value for distinguishing sensitizers and non-sensitizers. Our results show that not only are depletion values obtained using ADRA-FL virtually identical to those obtained using ADRA-UV, the threshold value for either test is 4.9%. Additionally, in order to demonstrate the applicability of ADRA-FL to multi-constituent substances, we prepared test samples that consisted of a set of 10 non-sensitizers combined with one of 10 different sensitizers and tested each using ADRA-FL. The test results were concordant with those obtained using ADRA-UV. Also, because ADRA-FL chromatograms showed a significant decrease in multiple peaks as well as extremely stable baselines, we conclude that ADRA-FL is a highly selective and highly accurate mans of quantifying nucleophilic reagents that is applicable to a wide variety of chemical substances.
ISSN:0388-1350
1880-3989
DOI:10.2131/jts.44.821