Loading…
PepA binds to and negatively regulates esrB to control virulence in the fish pathogen Edwardsiella piscicida
As an important marine fish pathogen, Edwardsiella piscicida infects a broad range of fish species and causes substantial economic losses. The EsrA-EsrB two-component system is essential for the expression of type III and type VI secretion systems (T3/T6SSs), the key virulence determinants in the ba...
Saved in:
Published in: | Microbiological research 2020-02, Vol.232, p.126349-126349, Article 126349 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As an important marine fish pathogen, Edwardsiella piscicida infects a broad range of fish species and causes substantial economic losses. The EsrA-EsrB two-component system is essential for the expression of type III and type VI secretion systems (T3/T6SSs), the key virulence determinants in the bacterium. In this study, a pull-down assay with the esrB promoter as bait was performed to identify the upstream regulators of esrB. As a result, PepA, a leucyl aminopeptidase, was identified as a repressor of EsrB and T3/T6SS expression. PepA bound to the esrB promoter region and negatively regulated the production of T3/T6SS proteins in early stages. Moreover, PepA was found to affect the in vivo colonization of E. piscicida in turbot livers through the regulation of EsrB expression. Collectively, our results enhance the understanding of the virulence regulatory network and in vivo colonization mechanism of E. piscicida.
One sentence summary: PepA regulates EsrB expression in Edwardsiella piscicida. |
---|---|
ISSN: | 0944-5013 1618-0623 |
DOI: | 10.1016/j.micres.2019.126349 |